@article{MitzscherlingMacLeanLipusetal.2022, author = {Mitzscherling, Julia and MacLean, Joana and Lipus, Daniel and Bartholom{\"a}us, Alexander and Mangelsdorf, Kai and Lipski, Andr{\´e} and Roddatis, Vladimir and Liebner, Susanne and Wagner, Dirk}, title = {Nocardioides alcanivorans sp. nov., a novel hexadecane-degrading species isolated from plastic waste}, series = {International journal of systematic and evolutionary microbiology}, volume = {72}, journal = {International journal of systematic and evolutionary microbiology}, number = {4}, publisher = {Microbiology Society}, address = {London}, issn = {1466-5026}, doi = {10.1099/ijsem.0.005319}, pages = {11}, year = {2022}, abstract = {Strain NGK65(T), a novel hexadecane degrading, non-motile, Gram-positive, rod-to-coccus shaped, aerobic bacterium, was isolated from plastic polluted soil sampled at a landfill. Strain NGK65(T) hydrolysed casein, gelatin, urea and was catalase-positive. It optimally grew at 28 degrees C. in 0-1\% NaCl and at pH 7.5-8.0. Glycerol, D-glucose, arbutin, aesculin, salicin, potassium 5-ketogluconate. sucrose, acetate, pyruvate and hexadecane were used as sole carbon sources. The predominant membrane fatty acids were iso-C-16:0 followed by iso-C(17:)0 and C-18:1 omega 9c. The major polar lipids were phosphatidylglycerol, phosphatidylethanolamine, phosphatidylinositol and hydroxyphosphatidylinositol. The cell-wall peptidoglycan type was A3 gamma, with LL-diaminopimelic acid and glycine as the diagnostic amino acids. MK 8 (H-4) was the predominant menaquinone. Phylogenetic analysis based on 16S rRNA gene sequences indicated that strain NGK65(T) belongs to the genus Nocardioides (phylum Actinobacteria). appearing most closely related to Nocardioides daejeonensis MJ31(T) (98.6\%) and Nocardioides dubius KSL-104(T) (98.3\%). The genomic DNA G+C content of strain NGK65(T) was 68.2\%. Strain NGK65(T) and the type strains of species involved in the analysis had average nucleotide identity values of 78.3-71.9\% as well as digital DNA-DNA hybridization values between 22.5 and 19.7\%, which clearly indicated that the isolate represents a novel species within the genus Nocardioides. Based on phenotypic and molecular characterization, strain NGK65(T) can clearly be differentiated from its phylogenetic neighbours to establish a novel species, for which the name Nocardioides alcanivorans sp. nov. is proposed. The type strain is NGK65(T) (=DSM 113112(T)=NCCB 100846(T)).}, language = {en} } @article{MitzscherlingHornWinterfeldetal.2019, author = {Mitzscherling, Julia and Horn, Fabian and Winterfeld, Maria and Mahler, Linda and Kallmeyer, Jens and Overduin, Pier Paul and Schirrmeister, Lutz and Winkel, Matthias and Grigoriev, Mikhail N. and Wagner, Dirk and Liebner, Susanne}, title = {Microbial community composition and abundance after millennia of submarine permafrost warming}, series = {Biogeosciences}, volume = {16}, journal = {Biogeosciences}, number = {19}, publisher = {Copernicus}, address = {G{\"o}ttingen}, issn = {1726-4170}, doi = {10.5194/bg-16-3941-2019}, pages = {3941 -- 3958}, year = {2019}, abstract = {Warming of the Arctic led to an increase in permafrost temperatures by about 0.3 degrees C during the last decade. Permafrost warming is associated with increasing sediment water content, permeability, and diffusivity and could in the long term alter microbial community composition and abundance even before permafrost thaws. We studied the long-term effect (up to 2500 years) of submarine permafrost warming on microbial communities along an onshore-offshore transect on the Siberian Arctic Shelf displaying a natural temperature gradient of more than 10 degrees C. We analysed the in situ development of bacterial abundance and community composition through total cell counts (TCCs), quantitative PCR of bacterial gene abundance, and amplicon sequencing and correlated the microbial community data with temperature, pore water chemistry, and sediment physicochemical parameters. On timescales of centuries, permafrost warming coincided with an overall decreasing microbial abundance, whereas millennia after warming microbial abundance was similar to cold onshore permafrost. In addition, the dissolved organic carbon content of all cores was lowest in submarine permafrost after millennial-scale warming. Based on correlation analysis, TCC, unlike bacterial gene abundance, showed a significant rank-based negative correlation with increasing temperature, while bacterial gene copy numbers showed a strong negative correlation with salinity. Bacterial community composition correlated only weakly with temperature but strongly with the pore water stable isotopes delta O-18 and delta D, as well as with depth. The bacterial community showed substantial spatial variation and an overall dominance of Actinobacteria, Chloroflexi, Firmicutes, Gemmatimonadetes, and Proteobacteria, which are amongst the microbial taxa that were also found to be active in other frozen permafrost environments. We suggest that, millennia after permafrost warming by over 10 degrees C, microbial community composition and abundance show some indications for proliferation but mainly reflect the sedimentation history and paleoenvironment and not a direct effect through warming.}, language = {en} } @article{BartholomaeusLipusMitzscherlingetal.2022, author = {Bartholom{\"a}us, Alexander and Lipus, Daniel and Mitzscherling, Julia and MacLean, Joana and Wagner, Dirk}, title = {Draft Genome Sequence of Nocardioides alcanivorans NGK65(T), a Hexadecane-Degrading Bacterium}, series = {Microbiology Resource Announcements}, volume = {11}, journal = {Microbiology Resource Announcements}, number = {8}, publisher = {American Society for Microbiology}, address = {Washington}, issn = {2576-098X}, doi = {10.1128/mra.01213-21}, pages = {2}, year = {2022}, abstract = {The Gram-positive bacterium Nocardioides alcanivorans NGK65(T) was isolated from plastic-polluted soil and cultivated on medium with polyethylene as the single carbon source. Nanopore sequencing revealed the presence of candidate enzymes for the biodegradation of polyethylene. Here, we report the draft genome of this newly described member of the terrestrial plastisphere.}, language = {en} }