@phdthesis{Zoerner2021, author = {Zoerner, Dietmar}, title = {F{\"o}rderung von Aufmerksamkeit und Motivationserhalt durch digitale spielbasierte Lernsysteme mit spezifischer Eignung bei Autismus}, doi = {10.25932/publishup-52372}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-523725}, school = {Universit{\"a}t Potsdam}, pages = {xvi, 324}, year = {2021}, abstract = {Institutionelle Bildung ist f{\"u}r autistische Lernende mit vielgestaltigen und spezifischen Hindernissen verbunden. Dies gilt insbesondere im Zusammenhang mit Inklusion, deren Relevanz nicht zuletzt durch das {\"U}bereinkommen der Vereinten Nationen {\"u}ber die Rechte von Menschen mit Behinderung gegeben ist. Diese Arbeit diskutiert zahlreiche lernrelevante Besonderheiten im Kontext von Autismus und zeigt Diskrepanzen zu den nicht immer ausreichend angemessenen institutionellen Lehrkonzepten. Eine zentrale These ist hierbei, dass die ungew{\"o}hnlich intensive Aufmerksamkeit von Autist*innen f{\"u}r ihre Spezialinteressen daf{\"u}r genutzt werden kann, das Lernen mit fremdgestellten Inhalten zu erleichtern. Darauf aufbauend werden L{\"o}sungsans{\"a}tze diskutiert, welche in einem neuartigen Konzept f{\"u}r ein digitales mehrger{\"a}tebasiertes Lernspiel resultieren. Eine wesentliche Herausforderung bei der Konzeption spielbasierten Lernens besteht in der ad{\"a}quaten Einbindung von Lerninhalten in einen fesselnden narrativen Kontext. Am Beispiel von {\"U}bungen zur emotionalen Deutung von Mimik, welche f{\"u}r das Lernen von sozioemotionalen Kompetenzen besonders im Rahmen von Therapiekonzepten bei Autismus Verwendung finden, wird eine angemessene Narration vorgestellt, welche die st{\"o}rungsarme Einbindung dieser sehr speziellen Lerninhalte erm{\"o}glicht. Die Effekte der einzelnen Konzeptionselemente werden anhand eines prototypisch entwickelten Lernspiels untersucht. Darauf aufbauend zeigt eine quantitative Studie die gute Akzeptanz und Nutzerfreundlichkeit des Spiels und belegte vor allem die Verst{\"a}ndlichkeit der Narration und der Spielelemente. Ein weiterer Schwerpunkt liegt in der minimalinvasiven Untersuchung m{\"o}glicher St{\"o}rungen des Spielerlebnisses durch den Wechsel zwischen verschiedenen Endger{\"a}ten, f{\"u}r die ein innovatives Messverfahren entwickelt wurde. Im Ergebnis beleuchtet diese Arbeit die Bedeutung und die Grenzen von spielbasierten Ans{\"a}tzen f{\"u}r autistische Lernende. Ein großer Teil der vorgestellten Konzepte l{\"a}sst sich auf andersartige Lernszenarien {\"u}bertragen. Das daf{\"u}r entwickelte technische Framework zur Realisierung narrativer Lernpfade ist ebenfalls darauf vorbereitet, f{\"u}r weitere Lernszenarien, gerade auch im institutionellen Kontext, Verwendung zu finden.}, language = {de} } @phdthesis{Ziehe2005, author = {Ziehe, Andreas}, title = {Blind source separation based on joint diagonalization of matrices with applications in biomedical signal processing}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-5694}, school = {Universit{\"a}t Potsdam}, year = {2005}, abstract = {This thesis is concerned with the solution of the blind source separation problem (BSS). The BSS problem occurs frequently in various scientific and technical applications. In essence, it consists in separating meaningful underlying components out of a mixture of a multitude of superimposed signals. In the recent research literature there are two related approaches to the BSS problem: The first is known as Independent Component Analysis (ICA), where the goal is to transform the data such that the components become as independent as possible. The second is based on the notion of diagonality of certain characteristic matrices derived from the data. Here the goal is to transform the matrices such that they become as diagonal as possible. In this thesis we study the latter method of approximate joint diagonalization (AJD) to achieve a solution of the BSS problem. After an introduction to the general setting, the thesis provides an overview on particular choices for the set of target matrices that can be used for BSS by joint diagonalization. As the main contribution of the thesis, new algorithms for approximate joint diagonalization of several matrices with non-orthogonal transformations are developed. These newly developed algorithms will be tested on synthetic benchmark datasets and compared to other previous diagonalization algorithms. Applications of the BSS methods to biomedical signal processing are discussed and exemplified with real-life data sets of multi-channel biomagnetic recordings.}, subject = {Signaltrennung}, language = {en} } @phdthesis{Zhou2008, author = {Zhou, Wei}, title = {Access control model and policies for collaborative environments}, address = {Potsdam}, pages = {199 S. : graph. Darst.}, year = {2008}, language = {en} } @phdthesis{Zarezadeh2012, author = {Zarezadeh, Aliakbar}, title = {Distributed smart cameras : architecture and communication protocols}, address = {Potsdam}, pages = {135 S.}, year = {2012}, language = {en} } @phdthesis{Yang2013, author = {Yang, Haojin}, title = {Automatic video indexing and retrieval using video ocr technology}, address = {Potsdam}, pages = {182 S.}, year = {2013}, language = {en} } @phdthesis{Wust2015, author = {Wust, Johannes}, title = {Mixed workload managment for in-memory databases}, pages = {VIII, 167}, year = {2015}, language = {en} } @phdthesis{Wolter2010, author = {Wolter, Christian}, title = {A methodology for model-driven process security}, address = {Potsdam}, pages = {xv, 144 S. : graph. Darst.}, year = {2010}, language = {en} } @phdthesis{Wist2011, author = {Wist, Dominic}, title = {Attacking complexity in logic synthesis of asynchronous circuits}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-59706}, school = {Universit{\"a}t Potsdam}, year = {2011}, abstract = {Most of the microelectronic circuits fabricated today are synchronous, i.e. they are driven by one or several clock signals. Synchronous circuit design faces several fundamental challenges such as high-speed clock distribution, integration of multiple cores operating at different clock rates, reduction of power consumption and dealing with voltage, temperature, manufacturing and runtime variations. Asynchronous or clockless design plays a key role in alleviating these challenges, however the design and test of asynchronous circuits is much more difficult in comparison to their synchronous counterparts. A driving force for a widespread use of asynchronous technology is the availability of mature EDA (Electronic Design Automation) tools which provide an entire automated design flow starting from an HDL (Hardware Description Language) specification yielding the final circuit layout. Even though there was much progress in developing such EDA tools for asynchronous circuit design during the last two decades, the maturity level as well as the acceptance of them is still not comparable with tools for synchronous circuit design. In particular, logic synthesis (which implies the application of Boolean minimisation techniques) for the entire system's control path can significantly improve the efficiency of the resulting asynchronous implementation, e.g. in terms of chip area and performance. However, logic synthesis, in particular for asynchronous circuits, suffers from complexity problems. Signal Transitions Graphs (STGs) are labelled Petri nets which are a widely used to specify the interface behaviour of speed independent (SI) circuits - a robust subclass of asynchronous circuits. STG decomposition is a promising approach to tackle complexity problems like state space explosion in logic synthesis of SI circuits. The (structural) decomposition of STGs is guided by a partition of the output signals and generates a usually much smaller component STG for each partition member, i.e. a component STG with a much smaller state space than the initial specification. However, decomposition can result in component STGs that in isolation have so-called irreducible CSC conflicts (i.e. these components are not SI synthesisable anymore) even if the specification has none of them. A new approach is presented to avoid such conflicts by introducing internal communication between the components. So far, STG decompositions are guided by the finest output partitions, i.e. one output per component. However, this might not yield optimal circuit implementations. Efficient heuristics are presented to determine coarser partitions leading to improved circuits in terms of chip area. For the new algorithms correctness proofs are given and their implementations are incorporated into the decomposition tool DESIJ. The presented techniques are successfully applied to some benchmarks - including 'real-life' specifications arising in the context of control resynthesis - which delivered promising results.}, language = {en} } @phdthesis{Wildner1997, author = {Wildner, Uwe}, title = {CASC : compiler assisted self-checking of structural integrity}, pages = {XIV, 134 S. : graph. Darst.}, year = {1997}, language = {en} } @phdthesis{Weise2021, author = {Weise, Matthias}, title = {Auswahl von Selektions- und Manipulationstechniken f{\"u}r Virtual Reality-Anwendungen}, doi = {10.25932/publishup-53458}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-534586}, school = {Universit{\"a}t Potsdam}, pages = {iii, 218}, year = {2021}, abstract = {Die stetige Weiterentwicklung von VR-Systemen bietet neue M{\"o}glichkeiten der Interaktion mit virtuellen Objekten im dreidimensionalen Raum, stellt Entwickelnde von VRAnwendungen aber auch vor neue Herausforderungen. Selektions- und Manipulationstechniken m{\"u}ssen unter Ber{\"u}cksichtigung des Anwendungsszenarios, der Zielgruppe und der zur Verf{\"u}gung stehenden Ein- und Ausgabeger{\"a}te ausgew{\"a}hlt werden. Diese Arbeit leistet einen Beitrag dazu, die Auswahl von passenden Interaktionstechniken zu unterst{\"u}tzen. Hierf{\"u}r wurde eine repr{\"a}sentative Menge von Selektions- und Manipulationstechniken untersucht und, unter Ber{\"u}cksichtigung existierender Klassifikationssysteme, eine Taxonomie entwickelt, die die Analyse der Techniken hinsichtlich interaktionsrelevanter Eigenschaften erm{\"o}glicht. Auf Basis dieser Taxonomie wurden Techniken ausgew{\"a}hlt, die in einer explorativen Studie verglichen wurden, um R{\"u}ckschl{\"u}sse auf die Dimensionen der Taxonomie zu ziehen und neue Indizien f{\"u}r Vor- und Nachteile der Techniken in spezifischen Anwendungsszenarien zu generieren. Die Ergebnisse der Arbeit m{\"u}nden in eine Webanwendung, die Entwickelnde von VR-Anwendungen gezielt dabei unterst{\"u}tzt, passende Selektions- und Manipulationstechniken f{\"u}r ein Anwendungsszenario auszuw{\"a}hlen, indem Techniken auf Basis der Taxonomie gefiltert und unter Verwendung der Resultate aus der Studie sortiert werden k{\"o}nnen.}, language = {de} } @phdthesis{Weigend2007, author = {Weigend, Michael}, title = {Intuitive Modelle der Informatik}, publisher = {Universit{\"a}tsverlag Potsdam}, address = {Potsdam}, isbn = {978-3-940793-08-9}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-15787}, school = {Universit{\"a}t Potsdam}, pages = {331}, year = {2007}, abstract = {Intuitive Modelle der Informatik sind gedankliche Vorstellungen {\"u}ber informatische Konzepte, die mit subjektiver Gewissheit verbunden sind. Menschen verwenden sie, wenn sie die Arbeitsweise von Computerprogrammen nachvollziehen oder anderen erkl{\"a}ren, die logische Korrektheit eines Programms pr{\"u}fen oder in einem kreativen Prozess selbst Programme entwickeln. Intuitive Modelle k{\"o}nnen auf verschiedene Weise repr{\"a}sentiert und kommuniziert werden, etwa verbal-abstrakt, durch ablauf- oder strukturorientierte Abbildungen und Filme oder konkrete Beispiele. Diskutiert werden in dieser Arbeit grundlegende intuitive Modelle f{\"u}r folgende inhaltliche Aspekte einer Programmausf{\"u}hrung: Allokation von Aktivit{\"a}t bei einer Programmausf{\"u}hrung, Benennung von Entit{\"a}ten, Daten, Funktionen, Verarbeitung, Kontrollstrukturen zur Steuerung von Programml{\"a}ufen, Rekursion, Klassen und Objekte. Mit Hilfe eines Systems von Online-Spielen, der Python Visual Sandbox, werden die psychische Realit{\"a}t verschiedener intuitiver Modelle bei Programmieranf{\"a}ngern nachgewiesen und fehlerhafte Anwendungen (Fehlvorstellungen) identifiziert.}, language = {de} } @phdthesis{Weidling2016, author = {Weidling, Stefan}, title = {Neue Ans{\"a}tze zur Verbesserung der Fehlertoleranz gegen{\"u}ber transienten Fehlern in sequentiellen Schaltungen}, school = {Universit{\"a}t Potsdam}, pages = {XII, 181}, year = {2016}, language = {de} } @phdthesis{Wang2011, author = {Wang, Long}, title = {X-tracking the usage interest on web sites}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-51077}, school = {Universit{\"a}t Potsdam}, year = {2011}, abstract = {The exponential expanding of the numbers of web sites and Internet users makes WWW the most important global information resource. From information publishing and electronic commerce to entertainment and social networking, the Web allows an inexpensive and efficient access to the services provided by individuals and institutions. The basic units for distributing these services are the web sites scattered throughout the world. However, the extreme fragility of web services and content, the high competence between similar services supplied by different sites, and the wide geographic distributions of the web users drive the urgent requirement from the web managers to track and understand the usage interest of their web customers. This thesis, "X-tracking the Usage Interest on Web Sites", aims to fulfill this requirement. "X" stands two meanings: one is that the usage interest differs from various web sites, and the other is that usage interest is depicted from multi aspects: internal and external, structural and conceptual, objective and subjective. "Tracking" shows that our concentration is on locating and measuring the differences and changes among usage patterns. This thesis presents the methodologies on discovering usage interest on three kinds of web sites: the public information portal site, e-learning site that provides kinds of streaming lectures and social site that supplies the public discussions on IT issues. On different sites, we concentrate on different issues related with mining usage interest. The educational information portal sites were the first implementation scenarios on discovering usage patterns and optimizing the organization of web services. In such cases, the usage patterns are modeled as frequent page sets, navigation paths, navigation structures or graphs. However, a necessary requirement is to rebuild the individual behaviors from usage history. We give a systematic study on how to rebuild individual behaviors. Besides, this thesis shows a new strategy on building content clusters based on pair browsing retrieved from usage logs. The difference between such clusters and the original web structure displays the distance between the destinations from usage side and the expectations from design side. Moreover, we study the problem on tracking the changes of usage patterns in their life cycles. The changes are described from internal side integrating conceptual and structure features, and from external side for the physical features; and described from local side measuring the difference between two time spans, and global side showing the change tendency along the life cycle. A platform, Web-Cares, is developed to discover the usage interest, to measure the difference between usage interest and site expectation and to track the changes of usage patterns. E-learning site provides the teaching materials such as slides, recorded lecture videos and exercise sheets. We focus on discovering the learning interest on streaming lectures, such as real medias, mp4 and flash clips. Compared to the information portal site, the usage on streaming lectures encapsulates the variables such as viewing time and actions during learning processes. The learning interest is discovered in the form of answering 6 questions, which covers finding the relations between pieces of lectures and the preference among different forms of lectures. We prefer on detecting the changes of learning interest on the same course from different semesters. The differences on the content and structure between two courses leverage the changes on the learning interest. We give an algorithm on measuring the difference on learning interest integrated with similarity comparison between courses. A search engine, TASK-Moniminer, is created to help the teacher query the learning interest on their streaming lectures on tele-TASK site. Social site acts as an online community attracting web users to discuss the common topics and share their interesting information. Compared to the public information portal site and e-learning web site, the rich interactions among users and web content bring the wider range of content quality, on the other hand, provide more possibilities to express and model usage interest. We propose a framework on finding and recommending high reputation articles in a social site. We observed that the reputation is classified into global and local categories; the quality of the articles having high reputation is related with the content features. Based on these observations, our framework is implemented firstly by finding the articles having global or local reputation, and secondly clustering articles based on their content relations, and then the articles are selected and recommended from each cluster based on their reputation ranks.}, language = {en} } @phdthesis{Wagner2012, author = {Wagner, Christian}, title = {Modellgetriebene Software-Migration}, address = {Potsdam}, pages = {276 S.}, year = {2012}, language = {de} } @phdthesis{Videla2014, author = {Videla, Santiago}, title = {Reasoning on the response of logical signaling networks with answer set programming}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-71890}, school = {Universit{\"a}t Potsdam}, year = {2014}, abstract = {Deciphering the functioning of biological networks is one of the central tasks in systems biology. In particular, signal transduction networks are crucial for the understanding of the cellular response to external and internal perturbations. Importantly, in order to cope with the complexity of these networks, mathematical and computational modeling is required. We propose a computational modeling framework in order to achieve more robust discoveries in the context of logical signaling networks. More precisely, we focus on modeling the response of logical signaling networks by means of automated reasoning using Answer Set Programming (ASP). ASP provides a declarative language for modeling various knowledge representation and reasoning problems. Moreover, available ASP solvers provide several reasoning modes for assessing the multitude of answer sets. Therefore, leveraging its rich modeling language and its highly efficient solving capacities, we use ASP to address three challenging problems in the context of logical signaling networks: learning of (Boolean) logical networks, experimental design, and identification of intervention strategies. Overall, the contribution of this thesis is three-fold. Firstly, we introduce a mathematical framework for characterizing and reasoning on the response of logical signaling networks. Secondly, we contribute to a growing list of successful applications of ASP in systems biology. Thirdly, we present a software providing a complete pipeline for automated reasoning on the response of logical signaling networks.}, language = {en} } @phdthesis{Uflacker2010, author = {Uflacker, Matthias}, title = {Monitoring virtual team collaboration : methods, applications and experiences in engineering design}, address = {Potsdam}, pages = {203 S.}, year = {2010}, language = {en} } @phdthesis{Troeger2008, author = {Tr{\"o}ger, Peter}, title = {Dynamische Ressourcenverwaltung f{\"u}r dienstbasierte Software-Systeme}, publisher = {Cuvillier}, address = {G{\"o}ttingen}, isbn = {978-3-86727-622-1}, pages = {v, 174 S.: Ill., garph. Darst.}, year = {2008}, language = {de} } @phdthesis{Troeger2008, author = {Tr{\"o}ger, Peter}, title = {Dynamische Ressourcenverwaltung f{\"u}r dienstbasierte Software-Systeme}, address = {Potsdam}, pages = {174 S., graph. Darst.}, year = {2008}, language = {de} } @phdthesis{Trapp2013, author = {Trapp, Matthias}, title = {Interactive rendering techniques for focus+context visualization of 3D geovirtual environments}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-66824}, school = {Universit{\"a}t Potsdam}, year = {2013}, abstract = {This thesis introduces a collection of new real-time rendering techniques and applications for focus+context visualization of interactive 3D geovirtual environments such as virtual 3D city and landscape models. These environments are generally characterized by a large number of objects and are of high complexity with respect to geometry and textures. For these reasons, their interactive 3D rendering represents a major challenge. Their 3D depiction implies a number of weaknesses such as occlusions, cluttered image contents, and partial screen-space usage. To overcome these limitations and, thus, to facilitate the effective communication of geo-information, principles of focus+context visualization can be used for the design of real-time 3D rendering techniques for 3D geovirtual environments (see Figure). In general, detailed views of a 3D geovirtual environment are combined seamlessly with abstracted views of the context within a single image. To perform the real-time image synthesis required for interactive visualization, dedicated parallel processors (GPUs) for rasterization of computer graphics primitives are used. For this purpose, the design and implementation of appropriate data structures and rendering pipelines are necessary. The contribution of this work comprises the following five real-time rendering methods: • The rendering technique for 3D generalization lenses enables the combination of different 3D city geometries (e.g., generalized versions of a 3D city model) in a single image in real time. The method is based on a generalized and fragment-precise clipping approach, which uses a compressible, raster-based data structure. It enables the combination of detailed views in the focus area with the representation of abstracted variants in the context area. • The rendering technique for the interactive visualization of dynamic raster data in 3D geovirtual environments facilitates the rendering of 2D surface lenses. It enables a flexible combination of different raster layers (e.g., aerial images or videos) using projective texturing for decoupling image and geometry data. Thus, various overlapping and nested 2D surface lenses of different contents can be visualized interactively. • The interactive rendering technique for image-based deformation of 3D geovirtual environments enables the real-time image synthesis of non-planar projections, such as cylindrical and spherical projections, as well as multi-focal 3D fisheye-lenses and the combination of planar and non-planar projections. • The rendering technique for view-dependent multi-perspective views of 3D geovirtual environments, based on the application of global deformations to the 3D scene geometry, can be used for synthesizing interactive panorama maps to combine detailed views close to the camera (focus) with abstract views in the background (context). This approach reduces occlusions, increases the usage the available screen space, and reduces the overload of image contents. • The object-based and image-based rendering techniques for highlighting objects and focus areas inside and outside the view frustum facilitate preattentive perception. The concepts and implementations of interactive image synthesis for focus+context visualization and their selected applications enable a more effective communication of spatial information, and provide building blocks for design and development of new applications and systems in the field of 3D geovirtual environments.}, language = {en} } @phdthesis{Tiwari2019, author = {Tiwari, Abhishek}, title = {Enhancing Users' Privacy: Static Resolution of the Dynamic Properties of Android}, school = {Universit{\"a}t Potsdam}, pages = {xiii, 111}, year = {2019}, abstract = {The usage of mobile devices is rapidly growing with Android being the most prevalent mobile operating system. Thanks to the vast variety of mobile applications, users are preferring smartphones over desktops for day to day tasks like Internet surfing. Consequently, smartphones store a plenitude of sensitive data. This data together with the high values of smartphones make them an attractive target for device/data theft (thieves/malicious applications). Unfortunately, state-of-the-art anti-theft solutions do not work if they do not have an active network connection, e.g., if the SIM card was removed from the device. In the majority of these cases, device owners permanently lose their smartphone together with their personal data, which is even worse. Apart from that malevolent applications perform malicious activities to steal sensitive information from smartphones. Recent research considered static program analysis to detect dangerous data leaks. These analyses work well for data leaks due to inter-component communication, but suffer from shortcomings for inter-app communication with respect to precision, soundness, and scalability. This thesis focuses on enhancing users' privacy on Android against physical device loss/theft and (un)intentional data leaks. It presents three novel frameworks: (1) ThiefTrap, an anti-theft framework for Android, (2) IIFA, a modular inter-app intent information flow analysis of Android applications, and (3) PIAnalyzer, a precise approach for PendingIntent vulnerability analysis. ThiefTrap is based on a novel concept of an anti-theft honeypot account that protects the owner's data while preventing a thief from resetting the device. We implemented the proposed scheme and evaluated it through an empirical user study with 35 participants. In this study, the owner's data could be protected, recovered, and anti-theft functionality could be performed unnoticed from the thief in all cases. IIFA proposes a novel approach for Android's inter-component/inter-app communication (ICC/IAC) analysis. Our main contribution is the first fully automatic, sound, and precise ICC/IAC information flow analysis that is scalable for realistic apps due to modularity, avoiding combinatorial explosion: Our approach determines communicating apps using short summaries rather than inlining intent calls between components and apps, which requires simultaneously analyzing all apps installed on a device. We evaluate IIFA in terms of precision, recall, and demonstrate its scalability to a large corpus of real-world apps. IIFA reports 62 problematic ICC-/IAC-related information flows via two or more apps/components. PIAnalyzer proposes a novel approach to analyze PendingIntent related vulnerabilities. PendingIntents are a powerful and universal feature of Android for inter-component communication. We empirically evaluate PIAnalyzer on a set of 1000 randomly selected applications and find 1358 insecure usages of PendingIntents, including 70 severe vulnerabilities.}, language = {en} }