@article{BouwerPapyrakisPoussinetal.2014, author = {Bouwer, Laurens M. and Papyrakis, Elissaios and Poussin, Jennifer and Pfurtscheller, Clemens and Thieken, Annegret}, title = {The costing of measures for natural hazard mitigation in Europe}, series = {Natural hazards review}, volume = {15}, journal = {Natural hazards review}, number = {4}, publisher = {American Society of Civil Engineers}, address = {Reston}, issn = {1527-6988}, doi = {10.1061/(ASCE)NH.1527-6996.0000133}, pages = {10}, year = {2014}, abstract = {The literature on the costing of mitigation measures for reducing impacts of natural hazards is rather fragmented. This paper provides a concise overview of the current state of knowledge in Europe on the costing of mitigation measures for the reduction of natural hazard risks (droughts, floods, storms and induced coastal hazards as well as alpine hazards) and identifies knowledge gaps and related research recommendations. Furthermore, it provides a taxonomy of related mitigation options, classifying them into nine categories: (1) management plans, land-use planning, and climate adaptation; (2) hazard modification; (3) infrastructure; (4) mitigation measures (stricto sensu); (5) communication in advance of events; (6) monitoring and early warning systems; (7) emergency response and evacuation; (8) financial incentives; and (9) risk transfer (including insurance). It is found that the costing of mitigation measures in European and in other countries has almost exclusively focused on estimating direct costs. A cost assessment framework that addresses a range of costs, possibly informed by multiple stakeholders, would provide more accurate estimates and could provide better guidance to decision makers. (C) 2014 American Society of Civil Engineers.}, language = {en} } @unpublished{KreibichvandenBerghBouweretal.2014, author = {Kreibich, Heidi and van den Bergh, Jeroen C. J. M. and Bouwer, Laurens M. and Bubeck, Philip and Ciavola, Paolo and Green, Colin and Hallegatte, Stephane and Logar, Ivana and Meyer, Volker and Schwarze, Reimund and Thieken, Annegret}, title = {Costing natural hazards}, series = {Nature climate change}, volume = {4}, journal = {Nature climate change}, number = {5}, publisher = {Nature Publ. Group}, address = {London}, issn = {1758-678X}, pages = {303 -- 306}, year = {2014}, language = {en} } @article{MerzAertsArnbjergNielsenetal.2014, author = {Merz, Bruno and Aerts, Jeroen C. J. H. and Arnbjerg-Nielsen, Karsten and Baldi, M. and Becker, Andrew C. and Bichet, A. and Bloeschl, G. and Bouwer, Laurens M. and Brauer, Achim and Cioffi, F. and Delgado, Jose Miguel Martins and Gocht, M. and Guzzetti, F. and Harrigan, S. and Hirschboeck, K. and Kilsby, C. and Kron, W. and Kwon, H. -H. and Lall, U. and Merz, R. and Nissen, K. and Salvatti, P. and Swierczynski, Tina and Ulbrich, U. and Viglione, A. and Ward, P. J. and Weiler, M. and Wilhelm, B. and Nied, Manuela}, title = {Floods and climate: emerging perspectives for flood risk assessment and management}, series = {Natural hazards and earth system sciences}, volume = {14}, journal = {Natural hazards and earth system sciences}, number = {7}, publisher = {Copernicus}, address = {G{\"o}ttingen}, issn = {1561-8633}, doi = {10.5194/nhess-14-1921-2014}, pages = {1921 -- 1942}, year = {2014}, abstract = {Flood estimation and flood management have traditionally been the domain of hydrologists, water resources engineers and statisticians, and disciplinary approaches abound. Dominant views have been shaped; one example is the catchment perspective: floods are formed and influenced by the interaction of local, catchment-specific characteristics, such as meteorology, topography and geology. These traditional views have been beneficial, but they have a narrow framing. In this paper we contrast traditional views with broader perspectives that are emerging from an improved understanding of the climatic context of floods. We come to the following conclusions: (1) extending the traditional system boundaries (local catchment, recent decades, hydrological/hydraulic processes) opens up exciting possibilities for better understanding and improved tools for flood risk assessment and management. (2) Statistical approaches in flood estimation need to be complemented by the search for the causal mechanisms and dominant processes in the atmosphere, catchment and river system that leave their fingerprints on flood characteristics. (3) Natural climate variability leads to time-varying flood characteristics, and this variation may be partially quantifiable and predictable, with the perspective of dynamic, climate-informed flood risk management. (4) Efforts are needed to fully account for factors that contribute to changes in all three risk components (hazard, exposure, vulnerability) and to better understand the interactions between society and floods. (5) Given the global scale and societal importance, we call for the organization of an international multidisciplinary collaboration and data-sharing initiative to further understand the links between climate and flooding and to advance flood research.}, language = {en} }