@article{MaercklinBedrosianHaberlandetal.2005, author = {Maercklin, Nils and Bedrosian, Paul A. and Haberland, Christian and Ritter, O. and Ryberg, Trond and Weber, Michael H. and Weckmann, Ute}, title = {Characterizing a large shear-zone with seismic and magnetotelluric methods : the case of the Dead Sea Transform}, issn = {0094-8276}, year = {2005}, abstract = {Seismic tomography, imaging of seismic scatterers, and magnetotelluric soundings reveal a sharp lithologic contrast along a similar to 10 km long segment of the Arava Fault (AF), a prominent fault of the southern Dead Sea Transform (DST) in the Middle East. Low seismic velocities and resistivities occur on its western side and higher values east of it, and the boundary between the two units coincides partly with a seismic scattering image. At 1 - 4 km depth the boundary is offset to the east of the AF surface trace, suggesting that at least two fault strands exist, and that slip occurred on multiple strands throughout the margin's history. A westward fault jump, possibly associated with straightening of a fault bend, explains both our observations and the narrow fault zone observed by others}, language = {en} } @article{WeberZetscheRybergetal.2005, author = {Weber, Michael H. and Zetsche, F. and Ryberg, Trond and Schulze, A. and Spangenberg, Erik and Huenges, Ernst}, title = {Seismic detection limits of small, deep, man-made reflectors : a test at a geothermal site in northern Germany}, issn = {0037-1106}, year = {2005}, abstract = {A key question for the development of geothermal plants is the seismic detection and monitoring of fluid injections at several kilometers depth. The detection and monitoring limits are controlled by several parameters, for example, the strength of seismic sources, number of receivers, vertical stacking, and noise conditions. For a known reference reflector at 2.66 km depth at a geothermal site in northern Germany the results of a simple surface seismic experiment were therefore combined with numerical forward modeling for different injection scenarios at 3.8 km depth. The underlying idea is that changes of reflectivity from the injection at 3.8 km must be larger than the variance of the measurements to be observable. Assuming that the injection at 3.8 km depth would produce a subhorizontal disklike target with a fracture porosity of 2\% or 5\% (the critical porosity) the water injection volume has to be at least 443 and 115 m(3), respectively, to be detectable from the surface. If the injection on the other hand does not create subhorizontal but subvertical pathways or only reduces the seismic velocities via the increased pore pressure in the immediate vicinity of the bore hole, the injection is undetectable from the surface. The most promising approach is therefore to move sources and/or receivers closer to the target, that is, the use of borehole instrumentation}, language = {en} }