@article{ZabelWinterKellingetal.2016, author = {Zabel, Andr{\´e} and Winter, Alette and Kelling, Alexandra and Schilde, Uwe and Strauch, Peter}, title = {Tetrabromidocuprates(II)-Synthesis, Structure and EPR}, series = {International journal of molecular sciences}, volume = {17}, journal = {International journal of molecular sciences}, number = {4}, publisher = {MDPI}, address = {Basel}, doi = {10.3390/ijms17040596}, pages = {14}, year = {2016}, abstract = {Metal-containing ionic liquids (ILs) are of interest for a variety of technical applications, e.g., particle synthesis and materials with magnetic or thermochromic properties. In this paper we report the synthesis of, and two structures for, some new tetrabromidocuprates(II) with several "onium" cations in comparison to the results of electron paramagnetic resonance (EPR) spectroscopic analyses. The sterically demanding cations were used to separate the paramagnetic Cu(II) ions for EPR measurements. The EPR hyperfine structure in the spectra of these new compounds is not resolved, due to the line broadening resulting from magnetic exchange between the still-incomplete separated paramagnetic Cu(II) centres. For the majority of compounds, the principal g values (g|| and gK) of the tensors could be determined and information on the structural changes in the [CuBr4]2- anions can be obtained. The complexes have high potential, e.g., as ionic liquids, as precursors for the synthesis of copper bromide particles, as catalytically active or paramagnetic ionic liquids.}, language = {en} } @misc{ZabelWinterKellingetal.2016, author = {Zabel, Andr{\´e} and Winter, Alette and Kelling, Alexandra and Schilde, Uwe and Strauch, Peter}, title = {Tetrabromidocuprates(II)-Synthesis, Structure and EPR}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-91470}, pages = {14}, year = {2016}, abstract = {Metal-containing ionic liquids (ILs) are of interest for a variety of technical applications, e.g., particle synthesis and materials with magnetic or thermochromic properties. In this paper we report the synthesis of, and two structures for, some new tetrabromidocuprates(II) with several "onium" cations in comparison to the results of electron paramagnetic resonance (EPR) spectroscopic analyses. The sterically demanding cations were used to separate the paramagnetic Cu(II) ions for EPR measurements. The EPR hyperfine structure in the spectra of these new compounds is not resolved, due to the line broadening resulting from magnetic exchange between the still-incomplete separated paramagnetic Cu(II) centres. For the majority of compounds, the principal g values (g|| and gK) of the tensors could be determined and information on the structural changes in the [CuBr4]2- anions can be obtained. The complexes have high potential, e.g., as ionic liquids, as precursors for the synthesis of copper bromide particles, as catalytically active or paramagnetic ionic liquids.}, language = {en} } @article{ZaitsevDoylePuchertPfeiferetal.2019, author = {Zaitsev-Doyle, John J. and Puchert, Anke and Pfeifer, Yannik and Yan, Hao and Yorke, Briony A. and M{\"u}ller-Werkmeister, Henrike and Uetrecht, Charlotte and Rehbein, Julia and Huse, Nils and Pearson, Arwen R. and Sans, Marta}, title = {Synthesis and characterisation of alpha-carboxynitrobenzyl photocaged l-aspartates for applications in time-resolved structural biology}, series = {RSC Advances}, volume = {9}, journal = {RSC Advances}, number = {15}, publisher = {Royal Society of Chemistry}, address = {Cambridge}, issn = {2046-2069}, doi = {10.1039/c9ra00968j}, pages = {8695 -- 8699}, year = {2019}, abstract = {We report a new synthetic route to a series of a-carboxynitrobenzyl photocaged L-aspartates for application in time-resolved structural biology. The resulting compounds were characterised in terms of UV/Vis absorption properties, aqueous solubility and stability, and photocleavage rates (tau = ms to ms) and quantum yields (phi = 0.05 to 0.14).}, language = {en} } @article{ZakrevskyyRitschelDoscheetal.2012, author = {Zakrevskyy, Y. and Ritschel, T. and Dosche, C. and L{\"o}hmannsr{\"o}ben, Hans-Gerd}, title = {Quantitative calibration - and reference-free wavelength modulation spectroscopy}, series = {Infrared physics \& technology}, volume = {55}, journal = {Infrared physics \& technology}, number = {2-3}, publisher = {Elsevier}, address = {Amsterdam}, issn = {1350-4495}, doi = {10.1016/j.infrared.2011.12.001}, pages = {183 -- 190}, year = {2012}, abstract = {A unified model for quantitative description of harmonic spectra of gases obtained by wavelength modulation spectroscopy (WMS) technique is presented. In the model, both intensity modulation (IM) and frequency modulation (FM) of the laser emission are taken into account using minimum number of parameters. For the first time, the static behavior of a laser is described as a limiting case of its dynamic response. Laser and its driver are considered as a single device converting applied bias to laser emission. This allows application of the model to any type of laser and the introduced parameters can be assigned to the corresponding laser and/or driver properties. The approach was tested using a distributed feedback (DFB) laser spectrometer. Correctness of the proposed model is justified by very good agreement between the measured and modeled/fitted spectra, which allowed evaluation of the setup performance and assessment of modulation parameters of the DFB laser. An algorithm to minimize the time of numerical calculation of harmonic spectra using numerically approximated Voigt lineshape function was developed. Absolute values of the absorption line parameters (line strength and line width) were obtained from a single calibration- and reference-free spectrum scan with accuracy better than 0.1\%.}, language = {en} } @article{ZakrevskyyCywinskiCywinskaetal.2014, author = {Zakrevskyy, Yuriy and Cywinski, Piotr and Cywinska, Magdalena and Paasche, Jens and Lomadze, Nino and Reich, Oliver and L{\"o}hmannsr{\"o}ben, Hans-Gerd and Santer, Svetlana}, title = {Interaction of photosensitive surfactant with DNA and poly acrylic acid}, series = {The journal of chemical physics : bridges a gap between journals of physics and journals of chemistr}, volume = {140}, journal = {The journal of chemical physics : bridges a gap between journals of physics and journals of chemistr}, number = {4}, publisher = {American Institute of Physics}, address = {Melville}, issn = {0021-9606}, doi = {10.1063/1.4862679}, pages = {8}, year = {2014}, language = {en} } @article{ZalaStruszczykPeter2001, author = {Zala, Eva and Struszczyk, Marcin Henryk and Peter, Martin G.}, title = {Effects of preparation methods for chitosan films on their properties}, year = {2001}, language = {en} } @article{ZamponiPenfoldNachtegaaletal.2014, author = {Zamponi, Flavio and Penfold, Thomas J. and Nachtegaal, Maarten and L{\"u}bcke, Andrea and Rittmann, Jochen and Milne, Chris J. and Chergui, Majed and van Bokhoven, Jeroen A.}, title = {Probing the dynamics of plasmon-excited hexanethiol-capped gold nanoparticles by picosecond X-ray absorption spectroscopy}, series = {physical chemistry, chemical physics : PCCP}, volume = {2014}, journal = {physical chemistry, chemical physics : PCCP}, number = {16}, issn = {1463-9076}, doi = {10.1039/c4cp03301a}, pages = {23157 -- 23163}, year = {2014}, abstract = {Picosecond X-ray absorption spectroscopy (XAS) is used to investigate the electronic and structural dynamics initiated by plasmon excitation of 1.8 nm diameter Au nanoparticles (NPs) functionalised with 1-hexanethiol. We show that 100 ps after photoexcitation the transient XAS spectrum is consistent with an 8\% expansion of the Au-Au bond length and a large increase in disorder associated with melting of the NPs. Recovery of the ground state occurs with a time constant of ∼1.8 ns, arising from thermalisation with the environment. Simulations reveal that the transient spectrum exhibits no signature of charge separation at 100 ps and allows us to estimate an upper limit for the quantum yield (QY) of this process to be <0.1.}, language = {en} } @misc{ZamponiPenfoldNachtegaaletal.2014, author = {Zamponi, Flavio and Penfold, Thomas J. and Nachtegaal, Maarten and L{\"u}bcke, Andrea and Rittmann, Jochen and Milne, Chris J. and Chergui, Majed and van Bokhoven, Jeroen A.}, title = {Probing the dynamics of plasmon-excited hexanethiol-capped gold nanoparticles by picosecond X-ray absorption spectroscopy}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-74492}, pages = {23157 -- 23163}, year = {2014}, abstract = {Picosecond X-ray absorption spectroscopy (XAS) is used to investigate the electronic and structural dynamics initiated by plasmon excitation of 1.8 nm diameter Au nanoparticles (NPs) functionalised with 1-hexanethiol. We show that 100 ps after photoexcitation the transient XAS spectrum is consistent with an 8\% expansion of the Au-Au bond length and a large increase in disorder associated with melting of the NPs. Recovery of the ground state occurs with a time constant of ∼1.8 ns, arising from thermalisation with the environment. Simulations reveal that the transient spectrum exhibits no signature of charge separation at 100 ps and allows us to estimate an upper limit for the quantum yield (QY) of this process to be <0.1.}, language = {en} } @phdthesis{Zarafshani2012, author = {Zarafshani, Zoya}, title = {Chain-end functionalization and modification of polymers using modular chemical reactions}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-59723}, school = {Universit{\"a}t Potsdam}, year = {2012}, abstract = {Taking advantage of ATRP and using functionalized initiators, different functionalities were introduced in both α and ω chain-ends of synthetic polymers. These functionalized polymers could then go through modular synthetic pathways such as click cycloaddition (copper-catalyzed or copper-free) or amidation to couple synthetic polymers to other synthetic polymers, biomolecules or silica monoliths. Using this general strategy and designing these co/polymers so that they are thermoresponsive, yet bioinert and biocompatible with adjustable cloud point values (as it is the case in the present thesis), the whole generated system becomes "smart" and potentially applicable in different branches. The applications which were considered in the present thesis were in polymer post-functionalization (in situ functionalization of micellar aggregates with low and high molecular weight molecules), hydrophilic/hydrophobic tuning, chromatography and bioconjugation (enzyme thermoprecipitation and recovery, improvement of enzyme activity). Different α-functionalized co/polymers containing cholesterol moiety, aldehyde, t-Boc protected amine, TMS-protected alkyne and NHS-activated ester were designed and synthesized in this work.}, language = {en} } @article{ZaupaNeffePierceetal.2011, author = {Zaupa, Alessandro and Neffe, Axel T. and Pierce, Benjamin F. and Lendlein, Andreas and Hofmann, Dieter}, title = {A molecular dynamic analysis of gelatin as an amorphous material Prediction of mechanical properties of gelatin systems}, series = {The international journal of artificial organs}, volume = {34}, journal = {The international journal of artificial organs}, number = {2}, publisher = {Wichtig}, address = {Milano}, issn = {0391-3988}, doi = {10.5301/IJAO.2010.6083}, pages = {139 -- 151}, year = {2011}, abstract = {Biomaterials are used in regenerative medicine for induced autoregeneration and tissue engineering. This is often challenging, however, due to difficulties in tailoring and controlling the respective material properties. Since functionalization is expected to offer better control, in this study gelatin chains were modified with physically interacting groups based on tyrosine with the aim of causing the formation of physical crosslinks. This method permits application-specific properties like swelling and better tailoring of mechanical properties. The design of the crosslink strategy was supported by molecular dynamic (MD) simulations of amorphous bulk models for gelatin and functionalized gelatins at different water contents (0.8 and 25 wt.-\%). The results permitted predictions to be formulated about the expected crosslink density and its influence on equilibrium swelling behavior and on elastic material properties. The models of pure gelatin were used to validate the strategy by comparison between simulated and experimental data such as density, backbone conformation angle distribution, and X-ray scattering spectra. A key result of the simulations was the prediction that increasing the number of aromatic functions attached to the gelatin chain leads to an increase in the number of physical netpoints observed in the simulated bulk packing models. By comparison with the Flory-Rehner model, this suggested reduced equilibrium swelling of the functionalized materials in water, a prediction that was subsequently confirmed by our experimental work. The reduction and control of the equilibrium degree of swelling in water is a key criterion for the applicability of functionalized gelatins when used, for example, as matrices for induced autoregeneration of tissues.}, language = {en} } @article{ZborowskiKochKleinpeteretal.2014, author = {Zborowski, Krzysztof Kazimierz and Koch, Andreas and Kleinpeter, Erich and Proniewicz, Leonard Marian}, title = {Searching for aromatic celate rings. Oxygen versus Thio and Seleno Ligands}, series = {Zeitschrift f{\"u}r physikalische Chemie : international journal of research in physical chemistry and chemical physics}, volume = {228}, journal = {Zeitschrift f{\"u}r physikalische Chemie : international journal of research in physical chemistry and chemical physics}, number = {8}, publisher = {De Gruyter}, address = {Berlin}, issn = {0942-9352}, doi = {10.1515/zpch-2014-0528}, pages = {869 -- 878}, year = {2014}, abstract = {As a part of searching for fully aromatic chelate compounds, copper complexes of malondialdehyde as well as its sulfur and selenium derivatives were investigated using the DFT quantum chemical methods. Chelate complexes of both Cu(I) and Cu(II) ions wereconsidered. Aromaticity of the metal complexes studied were analyzed using NICS(0), NICS(1), PDI, I-ring, MCI, ICMCI and I-B aromaticity indices, and by TSNMRS visualizations of the spatial magnetic properties. It seems that partial aromaticityof studied chelates increases when oxygen atoms in malondialdehyde are replaced by sulfur and selenium.}, language = {en} } @misc{ZehbeKolloscheLardongetal.2017, author = {Zehbe, Kerstin and Kollosche, Matthias and Lardong, Sebastian and Kelling, Alexandra and Schilde, Uwe and Taubert, Andreas}, title = {Ionogels based on poly(methyl methacrylate) and metal-containing ionic liquids}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-400607}, pages = {16}, year = {2017}, abstract = {Ionogels (IGs) based on poly(methyl methacrylate) (PMMA) and the metal-containing ionic liquids (ILs) bis-1-butyl-3-methlimidazolium tetrachloridocuprate(II), tetrachloride cobaltate(II), and tetrachlorido manganate(II) have been synthesized and their mechanical and electrical properties have been correlated with their microstructure. Unlike many previous examples, the current IGs show a decreasing stability in stress-strain experiments on increasing IL fractions. The conductivities of the current IGs are lower than those observed in similar examples in the literature. Both effects are caused by a two-phase structure with micrometer-sized IL-rich domains homogeneously dispersed an IL-deficient continuous PMMA phase. This study demonstrates that the IL-polymer miscibility and the morphology of the IGs are key parameters to control the (macroscopic) properties of IGs.}, language = {en} } @article{ZehbeLangeTaubert2019, author = {Zehbe, Kerstin and Lange, Alyna and Taubert, Andreas}, title = {Stereolithography Provides Access to 3D Printed lonogels with High Ionic Conductivity}, series = {Energy Fuels}, volume = {33}, journal = {Energy Fuels}, number = {12}, publisher = {American Chemical Society}, address = {Washington}, issn = {0887-0624}, doi = {10.1021/acs.energyfuels.9b03379}, pages = {12885 -- 12893}, year = {2019}, abstract = {New ionogels (IGs) were prepared by combination of a series of sulfonate-based ionic liquids (ILs), 1-methyl-3-(4-sulfobutyl)imidazolium para-toluenesulfonate [BmimSO(3)][pTS], 1-methyl-1-butylpiperidiniumsulfonate para-toluenesul-fonate [BmpipSO(3)] [pTS], and 1-methyl-3-(4-sulfobutyl) imidazolium methylsulfonate [BmimSO(3)H][MeSO3] with a commercial stereolithography photoreactive resin. The article describes both the fundamental properties of the ILs and the resulting IGs. The IGs obtained from the ILs and the resin show high ionic conductivity of up to ca. 0.7.10(-4) S/cm at room temperature and 3.4-10(-3) S/cm at 90 degrees C. Moreover, the IGs are thermally stable to about 200 degrees C and mechanically robust. Finally, and most importantly, the article demonstrates that the IGs can be molded three-dimensionally using stereolithography. This provides, for the first time, access to IGs with complex 3D shapes with potential application in battery or fuel cell technology.}, language = {en} } @article{ZehbeZehbe2016, author = {Zehbe, Rolf and Zehbe, Kerstin}, title = {Strontium doped poly-epsilon-caprolactone composite scaffolds made by reactive foaming}, series = {The European journal of the history of economic thought}, volume = {67}, journal = {The European journal of the history of economic thought}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0928-4931}, doi = {10.1016/j.msec.2016.05.045}, pages = {259 -- 266}, year = {2016}, abstract = {In the reconstruction and regeneration of bone tissue, a primary goal is to initiate bone growth and to stabilize the surrounding bone. In this regard, a potentially useful component in biomaterials for bone tissue engineering is strontium, which acts as cationic active agent, triggering certain intracellular pathways and acting as so called dual action bone agent which inhibits bone resorption while stimulating bone regeneration. In this study we established a novel processing for the foaming of a polymer (poly-epsilon-caprolactone) and simultaneous chemical reaction of a mixture of calcium and strontium hydroxides to the respective carbonates using supercritical carbon dioxide. The resultant porous composite scaffold was optimized in composition and strontium content and was characterized via different spectroscopic (infrared and Raman spectroscopy, energy dispersive X-ray spectroscopy), imaging (SEM, mu CT), mechanical testing and in vitro methods (fluorescence vital staining, MTT-assay). As a result, the composite scaffold showed good in vitro biocompatibility with partly open pore structure and the expected chemistry. First mechanical testing results indicate sufficient mechanical stability to support future in vivo applications. (C) 2016 Elsevier B.V. All rights reserved.}, language = {en} } @phdthesis{Zehm2010, author = {Zehm, Daniel}, title = {Amphiphile Block-B{\"u}rstenpolymere : ihre Synthese durch sequentielle Anwendung von CRP-Methoden und ihre Selbstorganisation in ausgew{\"a}hlten L{\"o}sungsmitteln}, address = {Potsdam}, pages = {XI, 166 S. : graph. Darst.}, year = {2010}, language = {de} } @article{ZehmFudickarHansetal.2008, author = {Zehm, Daniel and Fudickar, Werner and Hans, Melanie and Schilde, Uwe and Kelling, Alexandra and Linker, Torsten}, title = {9,10-Diarylanthracenes as molecular switches : syntheses, properties, isomerisations and their reactions with singlet oxygen}, issn = {0947-6539}, year = {2008}, abstract = {A series of 9,10-diarylanthracenes with various substituents at the ortho positions have been synthesised by palladium-catalysed cross-coupling reactions. Such compounds exhibit interesting physical properties and can be applied as molecular switches. Despite the high steric demand of the substituents, products were formed in moderate-to-good yields. In some cases, microwave conditions further improved yields. Bis-coupling afforded two isomers (syn and anti) that do not interconvert at room temperature. These products were easily separated and their relative stereochemistries were unequivocally assigned by NMR spectroscopy and X-ray analysis. The syn and anti isomers exhibit different physical properties (e.g., melting points and solubilities) and interconversion by rotation around the aryl-aryl axis commences at <100 °C for fluoro-substituted diarylanthracenes and at >300 °C for alkyl- or alkoxy-substituted diarylanthracenes. The reactions with singlet oxygen were studied separately and revealed different reactivities and reaction pathways. The yields and reactivities depend on the size and electronic nature of the substituents. The anti isomers form the same 9,10-endoperoxides as the syn species, occasionally accompanied by unexpected 1,4-endoperoxides as byproducts. Thermolysis of the endoperoxides exclusively yielded the syn isomers. The interesting rotation around the aryl-aryl axis allows the application of 9,10-diarylanthracenes as molecular switches, which are triggered by light and air under mild conditions. Finally, the oxygenation and thermolysis sequence provides a simple, synthetic access to a single stereoisomer (syn) from an unselective coupling step.}, language = {en} } @article{ZehmLaschewskyGradzielskietal.2010, author = {Zehm, Daniel and Laschewsky, Andr{\´e} and Gradzielski, Michael and Pr{\´e}vost, Sylvain and Liang, Hua and Rabe, J{\"u}rgen P. and Schweins, Ralf and Gummel, J{\´e}r{\´e}mie}, title = {Amphiphilic dual brush block copolymers as "giant surfactants" and their aqueous self-assembly}, issn = {0743-7463}, doi = {10.1021/La903087p}, year = {2010}, abstract = {Amphiphilic dual brush diblock as well as symmetrical triblock polymers were synthesized by the overlay of the reversible addition-fragmentation chain transfer and the nitroxide mediated polymerization (NMP) techniques. While poly(ethylene glycol) brushes served as hydrophilic block, the hydrophobic block was made of polystyrene brushes. The resulting "giant surfactants" correspond structurally to the established amphiphilic diblock and triblock copolymer known as macrosurfactants. The aggregation behavior of the novel "giant surfactants" in aqueous solution was studied by dynamic light scattering, small-angle neutron scattering (SANS), and small-angle X-ray scattering (SAXS) over a large range in reciprocal space. Further, the self-assembled aggregates Were investigated by scanning force microscopy (SFM) after deposition on differently functionalized ultraflat solid substrates. Despite the high fraction of hydrophobic segments, the polymers form stable mesoscopic, spherical aggregates with hydrodynamic diameters in the range of 150-350 nm. Though prepared from well-defined individual polymers, the aggregates show several similarities to hard core latexes. They are stable enough to he deposited without much changes onto surfaces, where they cluster and show Spontaneous sorting according to their size within the clusters, with the larger aggregates being in the center.}, language = {en} } @article{ZehmLaschewskyHeunemannetal.2011, author = {Zehm, Daniel and Laschewsky, Andr{\´e} and Heunemann, Peggy and Gradzielski, Michael and Prevost, Sylvain and Liang, Hua and Rabe, J{\"u}rgen P. and Lutz, Jean-Francois}, title = {Synthesis and self-assembly of amphiphilic semi-brush and dual brush block copolymers in solution and on surfaces}, series = {Polymer Chemistry}, volume = {2}, journal = {Polymer Chemistry}, number = {1}, publisher = {Royal Society of Chemistry}, address = {Cambridge}, issn = {1759-9954}, doi = {10.1039/c0py00200c}, pages = {137 -- 147}, year = {2011}, abstract = {The combination of two techniques of controlled free radical polymerization, namely the reversible addition fragmentation chain transfer (RAFT) and the atom transfer radical polymerization (ATRP) techniques, together with the use of a macromonomer allowed the synthesis of symmetrical triblock copolymers, designed as amphiphilic dual brushes. One type of brush was made of poly(n-butyl acrylate) as soft hydrophobic block, i.e. characterized by a low glass transition temperature, while the other one was made of hydrophilic poly(ethylene glycol) (PEG). The new triblock polymers represent "giant surfactants" according to their molecular architecture. The hydrophobic and hydrophilic blocks microphase separate in the bulk. In aqueous solution, they aggregate into globular micellar aggregates, their size being determined by the length of the stretched polymer molecules. As determined by the combination of various scattering techniques for the dual brush copolymer, a rather compact structure is formed, which is dominated by the large hydrophobic poly(n-butyl acrylate) block. The aggregation number for the dual brush is about 10 times larger than for the "semi-brush" precursor copolymer, due to the packing requirements for the much bulkier hydrophobic core. On mica surfaces the triblock copolymers adsorb with worm-like backbones and stretched out side chains.}, language = {en} } @article{ZehmLaschewskyLiangetal.2011, author = {Zehm, Daniel and Laschewsky, Andr{\´e} and Liang, Hua and Rabe, J{\"u}rgen P.}, title = {Straightforward access to amphiphilic dual bottle brushes by combining RAFT, ATRP, and NMP polymerization in one sequence}, series = {Macromolecules : a publication of the American Chemical Society}, volume = {44}, journal = {Macromolecules : a publication of the American Chemical Society}, number = {24}, publisher = {American Chemical Society}, address = {Washington}, issn = {0024-9297}, doi = {10.1021/ma2015613}, pages = {9635 -- 9641}, year = {2011}, abstract = {Molecular brush diblock copolymers were synthesized by the orthogonal overlay of the RAFT (reversible addition-fragmentation chain transfer), the ATRP (atom transfer radical polymerization), and the NMP (nitroxide-mediated polymerization) techniques. This unique combination enabled the synthesis of the complex amphiphilic polymers without the need of postpolymerization modifications, using a diblock copolymer intermediate made from two selectively addressable inimers and applying a sequence of four controlled free radical polymerization steps in total. The resulting polymers are composed of a thermosensitive poly(N-isopropylacrylamide) brush as hydrophilic block and a polystyrene brush as hydrophobic block, thus translating the structure of the established amphiphilic diblock copolymers known as macro surfactants to the higher size level of "giant surfactants". The dual molecular brushes and the aggregates formed on ultra flat solid substrates were visualized by scanning force microscopy (SFM).}, language = {en} } @article{ZenSaphiannikovaNeheretal.2006, author = {Zen, Achmad and Saphiannikova, Marina and Neher, Dieter and Grenzer, J{\"o}rg and Grigorian, Souren A. and Pietsch, Ullrich and Asawapirom, Udom and Janietz, Silvia and Scherf, Ullrich and Lieberwirth, Ingo and Wegner, Gerhard}, title = {Effect of molecular weight on the structure and crystallinity of poly(3-hexylthiophene)}, doi = {10.1021/Ma0521349}, year = {2006}, abstract = {Recently, two different groups have reported independently that the mobility of field-effect transistors made from regioregular poly(3-hexylthiophene) (P3HT) increases strongly with molecular weight. Two different models were presented: one proposing carrier trapping at grain boundaries and the second putting emphasis on the conformation and packing of the polymer chains in the thin layers for different molecular weights. Here, we present the results of detailed investigations of powders and thin films of deuterated P3HT fractions with different molecular weight. For powder samples, gel permeation chromatography (GPC), differential scanning calorimetry (DSC), and X-ray diffraction (XRD) were used to investigate the structure and crystallization behavior of the polymers. The GPC investigations show that all weight fractions possess a rather broad molecular weight distribution. DSC measurements reveal a strong decrease of the crystallization temperature and, most important, a significant decrease of the degree of crystallinity with decreasing molecular weight. To study the structure of thin layers in lateral and vertical directions, both transmission electron microscopy (TEM) and X-ray grazing incidence diffraction (GID) were utilized. These methods show that thin layers of the low molecular weight fraction consist of well-defined crystalline domains embedded in a disordered matrix. We propose that the transport properties of layers prepared from fractions of poly(3-hexylthiophene) with different molecular weight are largely determined by the crystallinity of the samples and not by the perfection of the packing of the chains in the individual crystallites}, language = {en} }