@article{AndrewsRossMunzkeetal.2016, author = {Andrews, Nicholas L. P. and Ross, Rachel and Munzke, Dorit and van Hoorn, Camiel and Brzezinski, Andrew and Barnes, Jack A. and Reich, Oliver and Loock, Hans-Peter}, title = {In-fiber Mach-Zehnder interferometer for gas refractive index measurements based on a hollow-core photonic crystal fiber}, series = {Optics express : the international electronic journal of optics}, volume = {24}, journal = {Optics express : the international electronic journal of optics}, publisher = {Optical Society of America}, address = {Washington}, issn = {1094-4087}, doi = {10.1364/OE.24.014086}, pages = {14086 -- 14099}, year = {2016}, abstract = {We describe an in-fiber interferometer based on a gas-filled hollow-core photonic crystal fiber. Expressions for the sensitivity, figure of merit and refractive index resolution are derived, and values are experimentally measured and theoretically validated using mode field calculations. The refractive indices of nine monoatomic and molecular gases are measured with a resolution of delta(ns) < 10(-6). (C)2016 Optical Society of America}, language = {en} } @phdthesis{Audoersch2016, author = {Aud{\"o}rsch, Stephan}, title = {Die Synthese von (2Z,4E)-Diencarbons{\"a}ureestern und ihre Anwendung in der Totalsynthese von Polyacetylenen}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-92366}, school = {Universit{\"a}t Potsdam}, pages = {139}, year = {2016}, abstract = {Z,E-Diene sind ein h{\"a}ufig auftretendes Strukturmerkmal in Naturstoffen. Aus diesem Grund ist die einfache Darstellung dieser Struktureinheit von großen Interesse in der organischen Chemie. Das erste Ziel der vorliegenden Arbeit war daher die Weiterentwicklung der Ringschlussmetathese-/ baseninduzierten Ring{\"o}ffnungs-/ Veresterungssequenz (RBRV-Sequenz) zur Synthese von (2Z,4E)-Diencarbons{\"a}ureethylestern ausgehend von Butenoaten. Dazu wurde zun{\"a}chst die RBRV-Sequenz optimiert. Diese aus drei Schritten bestehende Sequenz konnte in einem Eintopf-Verfahren angewendet werden. Die Ringschlussmetathese gelang mit einer Katalysatorbeladung von 1 mol\% des GRUBBS-Katalysators der zweiten Generation in Dichlormethan. F{\"u}r die baseninduzierte Ring{\"o}ffnung des β,γ-unges{\"a}ttigten δ Valerolactons wurde NaHMDS verwendet. Die Alkylierung der Carboxylatspezies gelang mit dem MEERWEIN-Reagenz. Die Anwendbarkeit der Sequenz wurde f{\"u}r verschiedene Substrate demonstriert. Die Erweiterung der Methode auf α-substituierte Butenoate unterlag starken Einschr{\"a}nkungen. So konnte der Zugang f{\"u}r α Hydroxyderivate realisiert werden. Bei der Anwendung der RBRV-Sequenz auf die α-substituierten Butenoate wurde festgestellt, dass diese sich nur in moderaten Ausbeuten umsetzen ließen und zudem nicht selektiv zu den (2E,4E)-konfigurierten α-substituierten-Dienestern reagierten. Der Einsatz von Eninen unter den Standardbedingungen der RBRV-Sequenz gelang nicht. Erst nach Modifizierung der Sequenz (h{\"o}here Katalysatorbeladung, Wechsel des L{\"o}sungsmittels) konnten die [3]Dendralen-Produkte in geringen Ausbeuten erhalten werden. Im zweiten Teil der Arbeit wurde der Einsatz von (2Z,4E)-Diencarbons{\"a}ureethylestern in der Totalsynthese von Naturstoffen untersucht. Dazu wurden zun{\"a}chst die Transformationsm{\"o}glichkeiten der Ester gepr{\"u}ft. Es konnte gezeigt werden, dass sich (2Z,4E)-Diencarbons{\"a}ureethylester insbesondere zur Synthese von (2Z,4E)-Aldehyden sowie zum Aufbau der (3Z,5E)-Dien-1-in-Struktur eignen. Anhand dieser Ergebnisse wurde im Anschluss die RBRV-Sequenz in der Totalsynthese eingesetzt. Dazu wurde zun{\"a}chst der (2Z,4E)-Dienester Microsphaerodiolin in seiner ersten Totalsynthese auf drei verschiedene Routen hergestellt. Im Anschluss wurden sechs verschiedene Polyacetylene mit einer (3Z,5E)-Dien-1-in-Einheit hergestellt. Schl{\"u}sselschritte in ihrer Synthese waren immer die RBRV-Sequenz zum Aufbau der Z,E-Dien-Einheit, die Transformation des Esters in ein terminales Alkin sowie die CADIOT-CHODKIEWICZ-Kupplung zum Aufbau unsymmetrischer Polyine. Alle sechs Polyacetylene wurden zum ersten Mal in einer Totalsynthese synthetisiert. Drei Polyacetylene wurden ausgehend von (S)-Butantriol enantiomerenrein dargestellt. Anhand ihrer Drehwerte konnte eine Revision der von YAO und Mitarbeitern vorgenommen Zuordnung der Absolutkonfiguration der Naturstoffe vorgenommen werden.}, language = {de} } @article{BaderKlierHettrichetal.2016, author = {Bader, Denise and Klier, Dennis Tobias and Hettrich, C. and Bier, Frank Fabian and Wessig, Pablo}, title = {Detecting carbohydrate-lectin interactions using a fluorescent probe based on DBD dyes}, series = {Analytical methods : advancing methods and applications}, volume = {8}, journal = {Analytical methods : advancing methods and applications}, publisher = {Royal Society of Chemistry}, address = {Cambridge}, issn = {1759-9660}, doi = {10.1039/c5ay02991k}, pages = {1235 -- 1238}, year = {2016}, abstract = {Herein we present an efficient synthesis of a biomimetic probe with modular construction that can be specifically bound by the mannose binding FimH protein - a surface adhesion protein of E. coli bacteria. The synthesis combines the new and interesting DBD dye with the carbohydrate ligand mannose via a Click reaction. We demonstrate the binding to E. coli bacteria over a large concentration range and also present some special characteristics of those molecules that are of particular interest for the application as a biosensor. In particular, the mix-and-measure ability and the very good photo-stability should be highlighted here.}, language = {en} } @article{BaierKellingSchildeetal.2016, author = {Baier, Heiko and Kelling, Alexandra and Schilde, Uwe and Holdt, Hans-J{\"u}rgen}, title = {Investigation of the Catalytic Activity of a 2-Phenylidenepyridine Palladium(II) Complex Bearing 4,5-Dicyano-1,3-bis(mesityl)imidazol-2-ylidene in the Mizoroki-Heck Reaction}, series = {Zeitschrift f{\~A}¼r anorganische und allgemeine Chemie}, volume = {642}, journal = {Zeitschrift f{\~A}¼r anorganische und allgemeine Chemie}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {0044-2313}, doi = {10.1002/zaac.201500625}, pages = {140 -- 147}, year = {2016}, abstract = {The phenylidenepyridine (ppy) palladacycles [PdCl(ppy)(IMes)] (4) [IMes = 1,3-bis(mesityl) imidazol-2-ylidene] and [PdCl(ppy){(CN)(2)IMes}] (6) [(CN)(2)IMes = 4,5-dicyano-1,3-bis(mesityl) imidazol-2-ylidene] were prepared by facile two step syntheses, starting with the reaction of palladium(II) chloride with 2-phenylpyridine followed by subsequent addition of the NHC ligand to the precatalyst precursor [PdCl(ppy)](2). Suitable crystals for the X-ray analysis of the complexes 4 and 6 were obtained. It was shown that 6 has a shorter NHC-palladium bond than the IMes complex 4. The difference of the palladium carbene bond lengths based on the higher pi-acceptor strength of (CN)(2)IMes in comparison to IMes. Thus, (CN)(2)IMes should stabilize the catalytically active central palladium atom better than IMes. As a measure for the pi-acceptor strength of (CN)(2)IMes compared to IMes, the selone (CN)(2)IMes center dot Se (7) was prepared and characterized by Se-77-NMR spectroscopy. The pi-acceptor strength of 7 was illuminated by the shift of its Se-77-NMR signal. The Se-77-NMR signal of 7 was shifted to much higher frequencies than the Se-77-NMR signal of IMes center dot Se. Catalytic experiments using the Mizoroki-Heck reaction of aryl chlorides with n-butyl acrylate showed that 6 is the superior performer in comparison to 4. Using complex 6, an extensive substrate screening of 26 different aryl bromides with n-butyl acrylate was performed. Complex 6 is a suitable precatalyst for para-substituted aryl bromides. The catalytically active species was identified by mercury poisoning experiments to be palladium nanoparticles.}, language = {en} } @article{BalciAkkayaAkyuzetal.2016, author = {Balci, K. and Akkaya, Y. and Akyuz, S. and Collier, W. B. and Stricker, M. C. and Stover, D. D. and Ritzhaupt, G. and Koch, Andreas and Kleinpeter, Erich}, title = {The effects of conformation and zwitterionic tautomerism on the structural and vibrational spectral data of anserine}, series = {Vibrational spectroscopy : an international journal devoted to applications of infrared and raman spectroscopy}, volume = {86}, journal = {Vibrational spectroscopy : an international journal devoted to applications of infrared and raman spectroscopy}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0924-2031}, doi = {10.1016/j.vibspec.2016.08.003}, pages = {277 -- 289}, year = {2016}, abstract = {In this study, the stable conformers of neutral anserine were searched by molecular dynamics simulations and energy minimization calculations using the MM2 force field. Thermochemical calculations at B3LYP/6-31G(d) level of theory followed these preliminary calculations. The results confirmed that neutral anserine has quite a flexible structure and many stable gauche and trans conformers at room temperature. Nevertheless, two are considerably more favourable in energy than the others and expected to dominate the gas-phase and matrix IR spectra of the molecule. The corresponding structural and vibrational spectral data for these two conformers of neutral anserine, whose relative stabilities were also examined by high-accuracy energy calculations carried out using G3MP2B3 method, and for the most stable conformer of anserine in zwitterion form were calculated at B3LYP/6-311++G(d,p) level of theory. The calculated harmonic force constants were refined using the Scaled Quantum Mechanical Force Field (SQM-FF) method and then used to produce the refined wavenumbers, potential energy distributions (PEDs) and IR and Raman intensities. These refined data together with the scaled harmonic wavenumbers obtained using another method, Dual Scale factors (DS), enabled us to correctly analyse the observed IR and Raman spectra of anserine and revealed the effects of conformation and zwitterionic tautomerism on its structural and vibrational spectral data. (C) 2016 Elsevier B.V. All rights reserved.}, language = {en} } @article{BalderasValadezAgarwalPacholski2016, author = {Balderas-Valadez, Ruth Fabiola and Agarwal, Vivechana and Pacholski, Claudia}, title = {Fabrication of porous silicon-based optical sensors using metal-assisted chemical etching}, series = {RSC Advances}, volume = {6}, journal = {RSC Advances}, publisher = {Royal Society of Chemistry}, address = {Cambridge}, issn = {2046-2069}, doi = {10.1039/c5ra26816h}, pages = {21430 -- 21434}, year = {2016}, abstract = {Optical biosensors based on porous silicon were fabricated by metal assisted chemical etching. Thereby double layered porous silicon structures were obtained consisting of porous pillars with large pores on top of a porous silicon layer with smaller pores. These structures showed a similar sensing performance in comparison to electrochemically produced porous silicon interferometric sensors.}, language = {en} } @article{BarazaNeserJacksonetal.2016, author = {Baraza, Lilechi D. and Neser, Wekesa and Jackson, Korir Cheruiyot and Fredrick, Juma B. and Dennis, Ochieno and Wairimu, Kamau R. and Keya, Aggrey Osogo and Heydenreich, Matthias}, title = {Antimicrobial Coumarins from the Oyster Culinary-Medicinal Mushroom, Pleurotus ostreatus (Agaricomycetes), from Kenya}, series = {International journal of medicinal mushrooms}, volume = {18}, journal = {International journal of medicinal mushrooms}, publisher = {Begell House}, address = {Danbury}, issn = {1521-9437}, doi = {10.1615/IntJMedMushrooms.v18.i10.60}, pages = {905 -- 913}, year = {2016}, abstract = {Pleurotus ostreatus has been widely used as food because of its nutritional and medicinal properties. These have been attributed to the presence of macronutrients, minerals, vitamins, and amino acids, among other secondary metabolites. There are, however, few reports on the antimicrobial activities of different classes of purified compounds from P. ostreatus. This led to the current study, the objective of which was to chemically characterize the antibiotic activities of P. ()streams against selected human pathogenic bacteria and endophytic fungi. Chemical structures were determined using spectroscopic methods and by comparison with values of related structures reported in the literature. Pure compounds from P. ostreatus were tested in vitro against pathogenic bacteria (Staphylococcus aureus and Escherichia coli) and endophytic fungi (Pencillium digitatum and Fusarium prolferatum). A new compound, (E)-5,7-dimethoxy-6-(3-methylbuta-1,3-dienyl)-2H-chromen-2-one (5-methoxy-(E)-suberodiene) (compound 2), along with ergosterol (compound I.) and 5,7-dimethoxy-6-(3-methylbut-2-enyl)-2H-chromen-2-one (toddaculin; compound 3), were isolated from the fruiting bodies of P. ostreatus. The growth of S. aureus,E proliferatum, and P. digitatum colonies was inhibited in media containing compound 2, with minimum inhibitory concentrations closely comparable to those of conventional antibiotics.}, language = {en} } @article{BartaSzatmariFueloepetal.2016, author = {Barta, Petra and Szatmari, Istvan and Fueloep, Ferenc and Heydenreich, Matthias and Koch, Andreas and Kleinpeter, Erich}, title = {Synthesis and stereochemistry of new naphth[1,3]oxazino[3,2-a] benzazepine and naphth[1,3]oxazino[3,2-e]thienopyridine derivatives}, series = {Tetrahedron}, volume = {72}, journal = {Tetrahedron}, publisher = {Elsevier}, address = {Oxford}, issn = {0040-4020}, doi = {10.1016/j.tet.2016.03.058}, pages = {2402 -- 2410}, year = {2016}, abstract = {Through the reactions of 1- or 2-naphthol and 4,5-dihydro-3H-benz[c]azepine or 6,7-dihydrothieno[3,2-c]pyridine, new aminonaphthol derivatives were prepared. The syntheses were extended by using N-containing naphthol analogues such as 5-hydroxyisoquinoline and 6-hydroxyquinoline. The ring closures of the novel bifunctional compounds were also achieved, resulting in new naphth[2,1-e][1,3]oxazines, naphth[1,2-e][1,3]oxazines, isoquinolino[5,6-e][1,3]oxazines and quinolino[5,6-e][1,3]oxazines. H-1 NMR spectra of the target heterocycles 16, 20 and 21 were sufficiently resolved to indentify the present stereochemistry; therefore, beside computed structures, spatial experimental (dipolar coupling-NOE) and computed (ring current effect of the naphthyl moiety-TSNMRS) NMR studies were employed. The studied heterocycles exist exclusively as S(14b),R(N), R(14b),S(N), and S(16b)S(N) isomers, respectively. The flexible moieties of the studied compounds prefer. (C) 2016 Elsevier Ltd. All rights reserved.}, language = {en} } @article{BauchBoettcherBornscheueretal.2016, author = {Bauch, Marcel and B{\"o}ttcher, Dominique and Bornscheuer, Uwe T. and Linker, Torsten}, title = {Enzymatic Cleavage of Aryl Acetates}, series = {ChemCatChem : heterogeneous \& homogeneous \& bio- \& nano-catalysis ; a journal of ChemPubSoc Europe}, volume = {8}, journal = {ChemCatChem : heterogeneous \& homogeneous \& bio- \& nano-catalysis ; a journal of ChemPubSoc Europe}, publisher = {Wiley-VCH}, address = {Weinheim}, organization = {HESS Collaboration}, issn = {1867-3880}, doi = {10.1002/cctc.201600678}, pages = {2853 -- 2857}, year = {2016}, abstract = {Seven enzymes have been screened for the cleavage of aryl acetates. Phenyl and naphthyl acetates react with lipases and esterases, whereas the sterically demanding anthracene acetate gave a conversion only with porcine liver esterase and esterase 2 from Bacillus subtilis (BS2). These two enzymes have been employed on a preparative (0.5 mmol) scale and afforded cleavage products in 91 and 94\% yields, even for anthracene acetate. Thus, this method is superior to chemical cleavage with catalytic amounts of sodium methoxide (Zemplen conditions), which gave only low conversions. Finally, regioselectivity has been achieved with an anthracene bisacetate, in which an ethyl group controls the cleavage of the first acetate. This indicates that steric interactions play a crucial role in the enzymatic cleavage of aryl acetates, which might be interesting for future applications or the development of enzyme inhibitors.}, language = {en} } @misc{BehrendtSchlaad2016, author = {Behrendt, Felix Nicolas and Schlaad, Helmut}, title = {Metathesis polymerization of cystine-based macrocycles}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-395080}, pages = {4}, year = {2016}, abstract = {Macrocycles based on L-cystine were synthesized by ring-closing metathesis (RCM) and subsequently polymerized by entropy-driven ring-opening metathesis polymerization (ED-ROMP). Monomer conversion reached ∼80\% in equilibrium and the produced poly(ester-amine-disulfide-alkene)s exhibited apparent molar masses (Mappw) of up to 80 kDa and dispersities (Đ) of ∼2. The polymers can be further functionalized with acid anhydrides and degraded by reductive cleavage of the main-chain disulfide.}, language = {en} } @article{BoeseSaalfrank2016, author = {Boese, Adrian Daniel and Saalfrank, Peter}, title = {CO Molecules on a NaCl(100) Surface: Structures, Energetics, and Vibrational Davydov Splittings at Various Coverages}, series = {The journal of physical chemistry : C, Nanomaterials and interfaces}, volume = {120}, journal = {The journal of physical chemistry : C, Nanomaterials and interfaces}, publisher = {American Chemical Society}, address = {Washington}, issn = {1932-7447}, doi = {10.1021/acs.jpcc.6b03726}, pages = {12637 -- 12653}, year = {2016}, abstract = {In this work, we study the adsorption of CO from low to high coverage at a defect-free NaCl(100) surface by means of duster and periodic models, using highly accurate wave function-based QM:QM embedding as well as density functional theory. At low coverages, the most accurate methods predict a zero-point-corrected adsorption energy of around 13 kJ/mol, and the CO molecules are found to be oriented perpendicular to the surface. At higher coverages, lower-energy phases with nonparallel/upright, tilted orientations emerge. Besides the well-known p(2 x 1)/antiparallel phase (T/A), we find other tilted phases (tilted/irregular, T/I; tilted/spiral, T/S) as local minima. Vibrational frequencies for CO adsorbed on NaCl(100) and Davydov splittings of the C-O stretch vibration are also determined. The IR spectra are characteristic fingerprints for the relative orientation of CO molecules and may therefore be used as sensitive probes to distinguish parallel/upright from various tilted adsorption phases.}, language = {en} } @article{BoisKoerzdoerfer2016, author = {Bois, Juliana and K{\"o}rzd{\"o}rfer, Thomas}, title = {0 How Bond Length Alternation and Thermal Disorder Affect the Optical Excitation Energies of pi-Conjugated Chains: A Combined Density Functional Theory and Molecular Dynamics Study}, series = {Journal of chemical theory and computation}, volume = {12}, journal = {Journal of chemical theory and computation}, publisher = {American Chemical Society}, address = {Washington}, issn = {1549-9618}, doi = {10.1021/acs.jctc.5b01070}, pages = {1872 -- 1882}, year = {2016}, abstract = {We dissect the sources of error leading to inaccuracies in the description of the geometry and optical excitation energies of pi-conjugated polymers. While the ground-state bond length alternation is shown to be badly reproduced by standard functionals, the recently adapted functionals PBEh* and omega PBE* as well as the double hybrid functional XYGJ-OS manage to replicate results obtained at the CCSD(T) level. By analysis of the bond length alternation in the excited state, a sensitive dependence of the exciton localization on the long-range behavior of the functional and the amount of Hartree-Fock exchange present is shown. Introducing thermal disorder through molecular dynamics simulations allows the consideration of a range of thermally accessible configurations of each oligomer, including trans to cis rotations, which break the conjugation of the backbone. Thermal disorder has a considerable effect when combined with functionals that overestimate the delocalization of the excitation, such as B3LYP. For functionals with a larger amount of exact exchange such as our PBEh* and omega PBE*, however, the effect is small, as excitations are often localized enough to fit between twists in the chain.}, language = {en} } @article{BrauneFroehlichLendleinetal.2016, author = {Braune, Steffen and Froehlich, G. M. and Lendlein, Andreas and Jung, Friedrich}, title = {Effect of temperature on platelet adherence}, series = {Clinical hemorheology and microcirculation : blood flow and vessels}, volume = {61}, journal = {Clinical hemorheology and microcirculation : blood flow and vessels}, publisher = {IOS Press}, address = {Amsterdam}, issn = {1386-0291}, doi = {10.3233/CH-152028}, pages = {681 -- 688}, year = {2016}, abstract = {BACKGROUND: Thrombogenicity is one of the main parameters tested in vitro to evaluate the hemocompatibility of artificial surfaces. While the influence of the temperature on platelet aggregation has been addressed by several studies, the temperature influence on the adherence of platelets to body foreign surfaces as an important aspect of biomedical device handling has not yet been explored. Therefore, we analyzed the influence of two typically applied incubation-temperatures (22 degrees C and 37 degrees C) on the adhesion of platelets to biomaterials. MATERIAL AND METHODS: Thrombogenicity of three different polymers - medical grade poly(dimethyl siloxane) (PDMS), polytetrafluoroethylene (PTFE) and polyethylene terephthalate (PET) - were studied in an in vitro static test. Platelet adhesion was studied with stringently characterized blood from apparently healthy subjects. Collection of whole blood and preparation of platelet rich plasma (PRP) was carried out at room temperature (22 degrees C). PRP was incubated with the polymers either at 22 degrees C or 37 degrees C. Surface adherent platelets were fixed, fluorescently labelled and assessed by an image-based approach. RESULTS AND DISCUSSION: Differences in the density of adherent platelets after incubation at 22 degrees C and 37 degrees C occurred on PDMS and PET. Similar levels of adherent platelets were observed on the very thrombogenic PTFE. The covered surface areas per single platelet were analyzed to measure the state of platelet activation and revealed no differences between the two incubation temperatures for any of the analyzed polymers. Irrespective of the observed differences between the low and medium thrombogenic PDMS and PET and the higher variability at 22 degrees C, the thrombogenicity of the three investigated polymers was evaluated being comparable at both incubation temperatures.}, language = {en} } @article{BrauneGrossWalteretal.2016, author = {Braune, Steffen and Gross, M. and Walter, M. and Zhou, Shengqiang and Dietze, Siegfried and Rutschow, S. and Lendlein, Andreas and Tschoepe, C. and Jung, Friedrich}, title = {Adhesion and activation of platelets from subjects with coronary artery disease and apparently healthy individuals on biomaterials}, series = {Journal of biomedical materials research : an official journal of the Society for Biomaterials, the Japanese Society for Biomaterials; the Australian Society for Biomaterials}, volume = {104}, journal = {Journal of biomedical materials research : an official journal of the Society for Biomaterials, the Japanese Society for Biomaterials; the Australian Society for Biomaterials}, publisher = {Wiley-Blackwell}, address = {Hoboken}, issn = {1552-4973}, doi = {10.1002/jbm.b.33366}, pages = {210 -- 217}, year = {2016}, abstract = {On the basis of the clinical studies in patients with coronary artery disease (CAD) presenting an increased percentage of activated platelets, we hypothesized that hemocompatibility testing utilizing platelets from healthy individuals may result in an underestimation of the materials' thrombogenicity. Therefore, we investigated the interaction of polymer-based biomaterials with platelets from CAD patients in comparison to platelets from apparently healthy individuals. In vitro static thrombogenicity tests revealed that adherent platelet densities and total platelet covered areas were significantly increased for the low (polydimethylsiloxane, PDMS) and medium (Collagen) thrombogenic surfaces in the CAD group compared to the healthy subjects group. The area per single platelet—indicating the spreading and activation of the platelets—was markedly increased on PDMS treated with PRP from CAD subjects. This could not be observed for collagen or polytetrafluoroethylene (PTFE). For the latter material, platelet adhesion and surface coverage did not differ between the two groups. Irrespective of the substrate, the variability of these parameters was increased for CAD patients compared to healthy subjects. This indicates a higher reactivity of platelets from CAD patients compared to the healthy individuals. Our results revealed, for the first time, that utilizing platelets from apparently healthy donors bears the risk of underestimating the thrombogenicity of polymer-based biomaterials.}, language = {en} } @phdthesis{Bressel2016, author = {Bressel, Lena}, title = {Bedeutung der abh{\"a}ngigen Streuung f{\"u}r die optischen Eigenschaften hochkonzentrierter Dispersionen}, school = {Universit{\"a}t Potsdam}, pages = {154, XL}, year = {2016}, language = {de} } @article{BrietzkeKellingSchildeetal.2016, author = {Brietzke, Thomas Martin and Kelling, Alexandra and Schilde, Uwe and Mickler, Wulfhard and Holdt, Hans-J{\"u}rgen}, title = {Heterodinuclear Ruthenium(II) Complexes of the Bridging Ligand 1,6,7,12-Tetraazaperylene with Iron(II), Cobalt(II), Nickel(II), as well as Palladium(II) and Platinum(II)}, series = {Zeitschrift f{\~A}¼r anorganische und allgemeine Chemie}, volume = {642}, journal = {Zeitschrift f{\~A}¼r anorganische und allgemeine Chemie}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {0044-2313}, doi = {10.1002/zaac.201500645}, pages = {8 -- 13}, year = {2016}, abstract = {The first heterodinuclear ruthenium(II) complexes of the 1,6,7,12-tetraazaperylene (tape) bridging ligand with iron(II), cobalt(II), and nickel(II) were synthesized and characterized. The metal coordination sphere in this complexes is filled by the tetradentate N,N-dimethyl-2,11-diaza[3.3](2,6)-pyridinophane (L-N4Me2) ligand, yielding complexes of the general formula [(L-N4Me2)Ru(mu-tape)M(L-N4Me2)](ClO4)(2)(PF6)(2) with M = Fe {[2](ClO4)(2)(PF6)(2)}, Co {[3](ClO4)(2)(PF6)(2)}, and Ni {[4](ClO4)(2)(PF6)(2)}. Furthermore, the heterodinuclear tape ruthenium(II) complexes with palladium(II)- and platinum(II)-dichloride [(bpy)(2)Ru(-tape)PdCl2](PF6)(2) {[5](PF6)(2)} and [(dmbpy)(2)Ru(-tape)PtCl2](PF6)(2) {[6](PF6)(2)}, respectively were also prepared. The molecular structures of the complex cations [2](4+) and [4](4+) were discussed on the basis of the X-ray structures of [2](ClO4)(4)MeCN and [4](ClO4)(4)MeCN. The electrochemical behavior and the UV/Vis absorption spectra of the heterodinuclear tape ruthenium(II) complexes were explored and compared with the data of the analogous mono- and homodinuclear ruthenium(II) complexes of the tape bridging ligand.}, language = {en} } @article{CharanKinzelGlebeetal.2016, author = {Charan, Himanshu and Kinzel, Julia and Glebe, Ulrich and Anand, Deepak and Garakani, Tayebeh Mirzaei and Zhu, Leilei and Bocola, Marco and Schwaneberg, Ulrich and B{\"o}ker, Alexander}, title = {Grafting PNIPAAm from beta-barrel shaped transmembrane nanopores}, series = {Biomaterials : biomaterials reviews online}, volume = {107}, journal = {Biomaterials : biomaterials reviews online}, publisher = {Elsevier}, address = {Oxford}, issn = {0142-9612}, doi = {10.1016/j.biomaterials.2016.08.033}, pages = {115 -- 123}, year = {2016}, abstract = {The research on protein-polymer conjugates by grafting from the surface of proteins has gained significant interest in the last decade. While there are many studies with globular proteins, membrane proteins have remained untouched to the best of our knowledge. In this study, we established the conjugate formation with a class of transmembrane proteins and grow polymer chains from the ferric hydroxamate uptake protein component A (FhuA; a beta-barrel transmembrane protein of Escherichia coli). As the lysine residues of naturally occurring FhuA are distributed over the whole protein, FhuA was reengineered to have up to 11 lysines, distributed symmetrically in a rim on the membrane exposed side (outside) of the protein channel and exclusively above the hydrophobic region. Reengineering of FhuA ensures a polymer growth only on the outside of the beta-barrel and prevents blockage of the channel as a result of the polymerization. A water-soluble initiator for controlled radical polymerization (CRP) was consecutively linked to the lysine residues of FhuA and N-isopropylacrylamide (NIPAAm) polymerized under copper mediated CRP conditions. The conjugate formation was analyzed by using MALDI-ToF mass spectrometry, SDS-PAGE, circular dichroism spectroscopy, analytical ultracentrifugation, dynamic light scattering, transmission electron microscopy and size exclusion chromatography. Such conjugates combine the specific functions of the transmembrane proteins, like maintaining membrane potential gradients or translocation of substrates with the unique properties of synthetic polymers such as temperature and pH stimuli handles. FhuA-PNIPAAm conjugates will serve as functional nanosized building blocks for applications in targeted drug delivery, self-assembly systems, functional membranes and transmembrane protein gated nanoreactors. (C) 2016 Elsevier Ltd. All rights reserved.}, language = {en} } @phdthesis{Couturier2016, author = {Couturier, Jean-Philippe}, title = {New inverse opal hydrogels as platform for detecting macromolecules}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-98412}, school = {Universit{\"a}t Potsdam}, pages = {xiii, 132, XXXVIII}, year = {2016}, abstract = {In this thesis, a route to temperature-, pH-, solvent-, 1,2-diol-, and protein-responsive sensors made of biocompatible and low-fouling materials is established. These sensor devices are based on the sensitivemodulation of the visual band gap of a photonic crystal (PhC), which is induced by the selective binding of analytes, triggering a volume phase transition. The PhCs introduced by this work show a high sensitivity not only for small biomolecules, but also for large analytes, such as glycopolymers or proteins. This enables the PhC to act as a sensor that detects analytes without the need of complex equipment. Due to their periodical dielectric structure, PhCs prevent the propagation of specific wavelengths. A change of the periodicity parameters is thus indicated by a change in the reflected wavelengths. In the case explored, the PhC sensors are implemented as periodically structured responsive hydrogels in formof an inverse opal. The stimuli-sensitive inverse opal hydrogels (IOHs) were prepared using a sacrificial opal template of monodispersed silica particles. First, monodisperse silica particles were assembled with a hexagonally packed structure via vertical deposition onto glass slides. The obtained silica crystals, also named colloidal crystals (CCs), exhibit structural color. Subsequently, the CCs templates were embedded in polymer matrix with low-fouling properties. The polymer matrices were composed of oligo(ethylene glycol) methacrylate derivatives (OEGMAs) that render the hydrogels thermoresponsive. Finally, the silica particles were etched, to produce highly porous hydrogel replicas of the CC. Importantly, the inner structure and thus the ability for light diffraction of the IOHs formed was maintained. The IOH membrane was shown to have interconnected pores with a diameter as well as interconnections between the pores of several hundred nanometers. This enables not only the detection of small analytes, but also, the detection of even large analytes that can diffuse into the nanostructured IOH membrane. Various recognition unit - analyte model systems, such as benzoboroxole - 1,2-diols, biotin - avidin and mannose - concanavalin A, were studied by incorporating functional comonomers of benzoboroxole, biotin and mannose into the copolymers. The incorporated recognition units specifically bind to certain low and highmolar mass biomolecules, namely to certain saccharides, catechols, glycopolymers or proteins. Their specific binding strongly changes the overall hydrophilicity, thus modulating the swelling of the IOH matrices, and in consequence, drastically changes their internal periodicity. This swelling is amplified by the thermoresponsive properties of the polymer matrix. The shift of the interference band gap due to the specific molecular recognition is easily visible by the naked eye (up to 150 nm shifts). Moreover, preliminary trial were attempted to detect even larger entities. Therefore anti-bodies were immobilized on hydrogel platforms via polymer-analogous esterification. These platforms incorporate comonomers made of tri(ethylene glycol) methacrylate end-functionalized with a carboxylic acid. In these model systems, the bacteria analytes are too big to penetrate into the IOH membranes, but can only interact with their surfaces. The selected model bacteria, as Escherichia coli, show a specific affinity to anti-body-functionalized hydrogels. Surprisingly in the case functionalized IOHs, this study produced weak color shifts, possibly opening a path to detect directly living organism, which will need further investigations.}, language = {en} } @article{CouturierWischerhoffBerninetal.2016, author = {Couturier, Jean-Philippe and Wischerhoff, Erik and Bernin, Robert and Hettrich, Cornelia and Koetz, Joachim and Sutterlin, Martin and Tiersch, Brigitte and Laschewsky, Andre}, title = {Thermoresponsive Polymers and Inverse Opal Hydrogels for the Detection of Diols}, series = {Langmuir}, volume = {32}, journal = {Langmuir}, publisher = {American Chemical Society}, address = {Washington}, issn = {0743-7463}, doi = {10.1021/acs.langmuir.6b00803}, pages = {4333 -- 4345}, year = {2016}, abstract = {Responsive inverse opal hydrogels functionalized by boroxole moieties were synthesized and explored as sensor platforms for various low molar mass as well as polymeric diols and polyols, including saccharides, glycopolymers and catechols, by exploiting the diol induced modulation of their structural color. The underlying thermoresponsive water-soluble copolymers and hydrogels exhibit a coil-to-globule or volume phase transition, respectively, of the LCST-type. They were prepared from oligoethylene oxide methacrylate (macro)monomers and functionalized via copolymerization to bear benzoboroxole moieties. The resulting copolymers represent weak polyacids, which can bind specifically to diols within an appropriate pH window. Due to the resulting modulation of the overall hydrophilicity of the systems and the consequent shift of their phase transition temperature, the usefulness of such systems for indicating the presence of catechols, saccharides, and glycopolymers was studied, exploiting the diol/polyol induced shifts of the soluble polymers' cloud point, or the induced changes of the hydrogels' swelling. In particular, the increased acidity of benzoboroxoles compared to standard phenylboronic acids allowed performing the studies in PBS buffer (phosphate buffered saline) at the physiologically relevant pH of 7.4. The inverse opals constructed of these thermo- and analyte-responsive hydrogels enabled following the binding of specific diols by the induced shift of the optical stop band. Their highly porous structure enabled the facile and specific optical detection of not only low molar mass but also of high molar mass diol/polyol analytes such as glycopolymers. Accordingly, such thermoresponsive inverse opal systems functionalized with recognition units represent attractive and promising platforms for the facile sensing of even rather big analytes by simple optical means, or even by the bare eye.}, language = {en} } @article{CywinskiPietraszkiewiczMaciejczyketal.2016, author = {Cywinski, Piotr J. and Pietraszkiewicz, Marek and Maciejczyk, Michal and Gorski, Krzysztof and Hammann, Tommy and Liermann, Konstanze and Paulke, Bernd-Reiner and L{\"o}hmannsr{\"o}ben, Hans-Gerd}, title = {Total protein concentration quantification using nanobeads with a new highly luminescent terbium(III) complex}, series = {RSC Advances}, volume = {6}, journal = {RSC Advances}, publisher = {Royal Society of Chemistry}, address = {Cambridge}, issn = {2046-2069}, doi = {10.1039/c6ra23207h}, pages = {115068 -- 115073}, year = {2016}, abstract = {Total protein concentration (TPC) is a key parameter in many biochemical experiments and its quantification is often necessary for isolation, separation, and analysis of proteins. A sensitive and rapid nanobead-based TPC quantification assay based on Forster Resonance Energy Transfer (FRET) has been developed. A new, highly luminescent Tb(III) complex has been synthesised and applied as donor in this FRET assay with an organic dye (Cy5) as acceptor. FRET-induced changes in luminescence have been investigated both at donor and acceptor emission wavelength using time-resolved luminescence spectroscopy with time-gated detection. In the assay, the Tb(III) complex and fine-tuned polyglycidyl methacrylate (PGMA) nanobeads ensure that an improvement in sensitivity and background reduction is achieved. Using 40 nm large PGMA nanobeads loaded with the Tb(III) complex, it is possible to determine TPC down to 50 ng mL(-1) in just 10 minutes. Through specific assay components the sensitivity has been improved when compared to existing nanobead-based assays and to currently known commercial methods. Additionally, the assay is relatively insensitive to the presence of contaminants, such as non-ionic detergents commonly found in biological samples. Due to no need for any centrifugal steps, this mix-and-measure bioassay can easily be implemented into routine TPC quantification protocols in biochemical laboratories.}, language = {en} }