@phdthesis{Holtze2004, author = {Holtze, Christian H. W.}, title = {Neue Einfl{\"u}sse und Anwendungen von Mikrowellenstrahlung auf Miniemulsionen und ihre Kompositpolymere}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-2492}, school = {Universit{\"a}t Potsdam}, year = {2004}, abstract = {Miniemulsionen bestehen aus zwei miteinander nicht mischbaren Fl{\"u}ssigkeiten, von der die eine in Form kleiner Tr{\"o}pfchen fein in der anderen verteilt (dispergiert) ist. Miniemulsionstr{\"o}pfchen sind mit Durchmessern von ungef{\"a}hr 0,1 Mikrometer kleiner als herk{\"o}mmliche Emulsionen und k{\"o}nnen u. a. als voneinander unabh{\"a}ngige Nanoreaktoren f{\"u}r chemische Reaktionen verwendet werden. Man unterteilt sie in direkte Miniemulsionen, in denen ein {\"O}l in Wasser dispergiert ist, und inverse Miniemulsionen, in denen Wasser in {\"O}l dispergiert wird. In dieser Arbeit wird das besondere chemische und physikalische Verhalten solcher Miniemulsionen unter dem Einfluß von Mikrowellenstrahlung untersucht. Dabei werden sowohl f{\"u}r {\"O}l-in-Wasser als auch f{\"u}r Wasser-in-{\"O}l-Miniemulsionen grundlagenwissenschaftliche Entdeckungen beschrieben und durch neue Modelle erkl{\"a}rt. Der praktische Nutzen dieser bislang unbeschriebenen Effekte wird durch ingenieurwissenschaftliche Anwendungsbeispiele im Bereich der Polymerchemie verdeutlicht. 1. Polymerisation mit "{\"u}berlebenden Radikalen" (Surviving Radical Polymerization) F{\"u}r die Herstellung von sog. Polymerlatizes (Kunststoffdispersionen, wie sie u. a. f{\"u}r Farben verwendet werden) aus direkten Styrol-in-Wasser Miniemulsionen werden die Styroltr{\"o}pfchen als Nanoreaktoren verwendet: Sie werden mit Hilfe von Radikalen durch eine Kettenreaktion zu winzigen Polymerpartikeln umgesetzt, die im Wasser dispergiert sind. Ihre Materialeigenschaften h{\"a}ngen stark von der Kettenl{\"a}nge der Polymermolek{\"u}le ab. In dieser Arbeit konnten durch den Einsatz von Mikrowellenstrahlung erstmals große Mengen an Radikalen erzeugt werden, die jeweils einzeln in Tr{\"o}pfchen (Nanoreaktoren) auch noch lange Zeit nach dem Verlassen der Mikrowelle {\"u}berleben und eine Polymerisationskettenreaktion ausf{\"u}hren k{\"o}nnen. Diese Methode erm{\"o}glicht nicht nur die Herstellung von Polymeren in technisch zuvor unerreichbaren Kettenl{\"a}ngen, mit ihr sind auch enorm hohe Ums{\"a}tze nach sehr kurzen Verweilzeiten in der Mikrowelle m{\"o}glich - denn die eigentliche Reaktion findet außerhalb statt. Es konnte gezeigt werden, dass durch Einsatz von Zusatzstoffen bei unvermindert hohem Umsatz die Polymerkettenl{\"a}nge variiert werden kann. Die technischen Vorz{\"u}ge dieses Verfahrens konnten in einer kontinuierlich betriebenen Pilotanlage nachgewiesen werden. 2. Aufheizverhalten inverser Miniemulsionen in Mikrowellen{\"o}fen Das Aufheizverhalen von Wasser-in-{\"O}l Miniemulsionen mit kleinen Durchmessern durch Mikrowellen ist {\"u}beraus tr{\"a}ge, da sich nur das wenige Wasser in den Tr{\"o}pfchen mit Mikrowellen aufheizen l{\"a}sst, das {\"O}l jedoch kaum. Solche Systeme verhalten sich gem{\"a}ß der "Theorie des effektiven Mediums". Werden aber etwas gr{\"o}ßere Tr{\"o}pfchen im Mikrometerbereich Mikrowellen ausgesetzt, so konnte eine wesentlich schnellere Aufheizung beobachtet werden, die auf eine Maxwell-Wagner-Grenzfl{\"a}chenpolarisation zur{\"u}ckgef{\"u}hrt werden kann. Die Gr{\"o}ßenabh{\"a}ngigkeit dieses Effekts wurde mit Hilfe der dielektrischen Spektroskopie quantifiziert und ist bislang in der Literatur nie beschrieben worden. Zur genauen Messung dieses Effekts und zu seiner technischen Nutzung wurde ein neuartiges Membranverfahren f{\"u}r die Herstellung von großen Miniemulsionstr{\"o}pfchen im Mikrometerbereich entwickelt. 3. Herstellung von Kompositpolymeren f{\"u}r Mikrowellenanwendungen Um die untersuchte Maxwell-Wagner-Grenzfl{\"a}chenpolarisation technisch nutzen zu k{\"o}nnen, wurden als daf{\"u}r geeignete Materialien Kompositpolymere hergestellt. Das sind Kunststoffe, in denen winzige Wassertropfen oder Keramikpartikel eingeschlossen sind. Dazu wurden neuartige Synthesewege auf der Grundlage der Miniemulsionstechnik entwickelt. Ihr gemeinsames Ziel ist die Einschr{\"a}nkung der {\"u}blicherweise bei Polymerisation auftretenden Entmischung: In einem Verfahren wurde durch Gelierung die Beweglichkeit der emulgierten Wassertr{\"o}pfchen eingeschr{\"a}nkt, in einem anderen wurde durch das Einschließen von Keramikpartikeln in Miniemulsionstr{\"o}pfchen die Entmischung auf deren Gr{\"o}ße beschr{\"a}nkt. Anwendungen solcher Kompositpolymere k{\"o}nnten k{\"u}nstliche Muskeln, die Absorption von Radarstrahlung, z. B. f{\"u}r Tarnkappenflugzeuge, oder kratzfeste Lacke sein.Bei diesen Experimenten wurde beobachtet, daß sich u. U. in der Miniemulsion große Tr{\"o}pfchen bilden. Ihr Ursprung wird mit einer neuen Modellvorstellung erkl{\"a}rt, die die Einfl{\"u}sse auf die Stabilit{\"a}t von Miniemulsionen beschreibt.}, subject = {Emulsion}, language = {de} } @phdthesis{Kluge2021, author = {Kluge, Steven}, title = {Integration anorganischer F{\"u}llstoffe in Polysulfonmembranen und Auswirkungen auf die Gastransporteigenschaften}, doi = {10.25932/publishup-53270}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-532700}, school = {Universit{\"a}t Potsdam}, pages = {110}, year = {2021}, abstract = {In der vorliegenden Arbeit wird die Herstellung und Charakterisierung von Mixed-Matrix-Membranen (MMM) f{\"u}r die Gastrennung thematisiert. Dazu wurden verschiedene F{\"u}llstoffe genutzt, um in Verbindung mit dem Membranmaterial Polysulfon MMMs herzustellen. Als F{\"u}llstoffe wurden 3 aktive und 2 passive F{\"u}llstoffe verwendet. Die aktiven F{\"u}llstoffe besaßen Poren{\"o}ffnungen, die in der Lage sind Gase in Abh{\"a}ngigkeit der Molek{\"u}lgr{\"o}ße zu trennen. Daraus folgt ein h{\"o}herer idealer Trennfaktor f{\"u}r bestimmte Gaspaare als in Polysulfon selbst. Aufgrund der durch die Poren gebildeten permanenten Kan{\"a}le in den aktiven F{\"u}llstoffen ergibt sich ein schnellerer Gastransport (Permeabilit{\"a}t) als in Polysulfon. Es handelte sich bei den aktiven F{\"u}llstoffen um den Zeolith SAPO-34 und 2 Chargen eines Zeolitic Imidazolate Framework (ZIF) ZIF-8. Die beiden Chargen ZIF-8 unterschieden sich in ihrer spezifischen Oberfl{\"a}che, was diesen Einfluss speziell in die Untersuchungen zum Gastransport einbeziehen sollte. Bei den passiven F{\"u}llstoffen handelte es sich um ein aminofunktionalisiertes Kieselgel und unpor{\"o}se (dichte) Glask{\"u}gelchen. Das Kieselgel besaß Poren, die zu groß waren, um Gase effektiv zu trennen. Die Glask{\"u}gelchen konnten keine Gastrennung erm{\"o}glichen, da sie keine Poren besaßen. Aus der Literatur ist bekannt, dass die Einbettung von F{\"u}llstoffen oft zu Defekten in MMMs f{\"u}hrt. Ein Ziel dieser Arbeit war es daher die Einbettung zu optimieren. Weiterhin sollte der Gastransport in MMMs dieser Arbeit mit dem in einer unbeladenen Polysulfonmembran verglichen werden. Aufgrund des selektiveren Trennverhaltens der aktiven F{\"u}llstoffe im Vergleich zum Membranmaterial, sollte mit der Einbettung aktiver F{\"u}llstoffe die Trennleistung der MMMs mit steigender F{\"u}llstoffbeladung immer weiter verbessert werden. Um die Eigenschaften der MMMs zu untersuchen, wurden diese mittels Rasterelektronenmikroskop (REM), Gaspermeationsmessungen (GP) und Thermogravimetrischer Analyse gekoppelt mit Massenspektrometrie (TGA-MS) charakterisiert. Untersuchungen am REM konnten eine Verbesserung der Einbettung zeigen, wenn ein polymerer Haftvermittler verwendet wurde. Verglichen wurde die optimierte Einbettung mit der Einbettung ohne Haftvermittler und Ergebnissen aus der Literatur, in der die Verwendung verschiedener Silane als Haftvermittler beschrieben wurde. Trotz der verbesserten Einbettung konnte lediglich bei geringen Beladungen an F{\"u}llstoff (10 und 20 Ma-\% bezogen auf das Membranmaterial) eine geringe Steigerung des idealen Trennfaktors in den MMMs gegen{\"u}ber der unbeladenen Polysulfonmembranen beobachtet werden. Bei h{\"o}heren F{\"u}llstoffbeladungen (30, 40 und 50 Ma-\%) war ein deutlicher Anstieg der Permeabilit{\"a}t bei stark sinkendem idealen Trennfaktor zu beobachten. Mit Hilfe von TGA-MS Messungen konnte dar{\"u}ber hinaus festgestellt werden, dass der verwendete Zeolith SAPO-34 durch Wassermolek{\"u}le blockierte Poren{\"o}ffnungen besaß. Das verhinderte den Gastransport im F{\"u}llstoff, wodurch die Trennleistung des F{\"u}llstoffes nicht ausgenutzt werden konnte. Die F{\"u}llstoffe ZIF-8 (chargenunabh{\"a}ngig) und aminofunktionalisiertes Kieselgel wiesen keine blockierten Poren auf. Dennoch zeigte sich in diesen MMMs keine Verbesserung der Gastrenn- oder Gastransporteigenschaften. MMMs mit dichten Glask{\"u}gelchen als F{\"u}llstoff zeigten dasselbe Gastrenn- und Gastransportverhalten, wie alle MMMs mit den zuvor genannten F{\"u}llstoffen. In dieser Arbeit konnte, trotz optimierter Einbettung anorganischer F{\"u}llstoffe, f{\"u}r MMMs keine Verbesserung der Gastrenn- oder Gastransporteigenschaften nachgewiesen werden. Vielmehr wurde ein Einfluss der F{\"u}llstoffmenge auf die Gastransporteigenschaften in MMMs festgestellt. Die {\"A}nderungen der MMMs gegen{\"u}ber Polysulfon stammen von den Folgen der Einbettung von F{\"u}llstoffen in das Matrixpolymer. Durch die Einbettung werden die Eigenschaften des Matrixpolymers {\"a}ndern, sodass auch der Gastransport beeinflusst wird. Des Weiteren wurde dokumentiert, dass in Abh{\"a}ngigkeit der F{\"u}llstoffbeladung die entstehende Membranstruktur beeinflusst wird. Die Beeinflussung war dabei unabh{\"a}ngig von der F{\"u}llstoffart. Es wurde eine Korrelation zwischen F{\"u}llstoffmenge und ver{\"a}nderter Membranstruktur gefunden.}, language = {de} }