@article{AwadWeidlichWeske2011, author = {Awad, Ahmed Mahmoud Hany Aly and Weidlich, Matthias and Weske, Mathias}, title = {Visually specifying compliance rules and explaining their violations for business processes}, series = {Journal of visual languages and computing}, volume = {22}, journal = {Journal of visual languages and computing}, number = {1}, publisher = {Elsevier}, address = {London}, issn = {1045-926X}, doi = {10.1016/j.jvlc.2010.11.002}, pages = {30 -- 55}, year = {2011}, abstract = {A business process is a set of steps designed to be executed in a certain order to achieve a business value. Such processes are often driven by and documented using process models. Nowadays, process models are also applied to drive process execution. Thus, correctness of business process models is a must. Much of the work has been devoted to check general, domain-independent correctness criteria, such as soundness. However, business processes must also adhere to and show compliance with various regulations and constraints, the so-called compliance requirements. These are domain-dependent requirements. In many situations, verifying compliance on a model level is of great value, since violations can be resolved in an early stage prior to execution. However, this calls for using formal verification techniques, e.g., model checking, that are too complex for business experts to apply. In this paper, we utilize a visual language. BPMN-Q to express compliance requirements visually in a way similar to that used by business experts to build process models. Still, using a pattern based approach, each BPMN-Qgraph has a formal temporal logic expression in computational tree logic (CTL). Moreover, the user is able to express constraints, i.e., compliance rules, regarding control flow and data flow aspects. In order to provide valuable feedback to a user in case of violations, we depend on temporal logic querying approaches as well as BPMN-Q to visually highlight paths in a process model whose execution causes violations.}, language = {en} } @article{DeckerWeske2011, author = {Decker, Gero and Weske, Mathias}, title = {Interaction-centric modeling of process choreographies}, series = {Information systems}, volume = {36}, journal = {Information systems}, number = {2}, publisher = {Elsevier}, address = {Oxford}, issn = {0306-4379}, doi = {10.1016/j.is.2010.06.005}, pages = {292 -- 312}, year = {2011}, abstract = {With the rise of electronic integration between organizations, the need for a precise specification of interaction behavior increases. Information systems, replacing interaction previously carried out by humans via phone, faxes and emails, require a precise specification for handling all possible situations. Such interaction behavior is described in process choreographies. While many proposals for choreography languages have already been made, most of them fall into the category of interconnection models, where the observable behavior of the different partners is described and then related via message flow. As this article will show, this modeling approach fails to support fundamental design principles of choreographies and typically leads to modeling errors. This motivates an alternative modeling style, namely interaction modeling, for overcoming these limitations. While the main concepts are independent of a concrete modeling language, iBPMN is introduced as novel interaction modeling language. Formal execution semantics are provided and a comprehensive toolset implementing the approach is presented.}, language = {en} } @book{MeyerSmirnovWeske2011, author = {Meyer, Andreas and Smirnov, Sergey and Weske, Mathias}, title = {Data in business processes}, publisher = {Universit{\"a}tsverlag Potsdam}, address = {Potsdam}, isbn = {978-3-86956-144-8}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-53046}, publisher = {Universit{\"a}t Potsdam}, pages = {40}, year = {2011}, abstract = {Process and data are equally important for business process management. Process data is especially relevant in the context of automated business processes, process controlling, and representation of organizations' core assets. One can discover many process modeling languages, each having a specific set of data modeling capabilities and the level of data awareness. The level of data awareness and data modeling capabilities vary significantly from one language to another. This paper evaluates several process modeling languages with respect to the role of data. To find a common ground for comparison, we develop a framework, which systematically organizes process- and data-related aspects of the modeling languages elaborating on the data aspects. Once the framework is in place, we compare twelve process modeling languages against it. We generalize the results of the comparison and identify clusters of similar languages with respect to data awareness.}, language = {de} } @book{SmirnovZamaniFarahaniWeske2011, author = {Smirnov, Sergey and Zamani Farahani, Armin and Weske, Mathias}, title = {State propagation in abstracted business processes}, publisher = {Universit{\"a}tsverlag Potsdam}, address = {Potsdam}, isbn = {978-3-86956-130-1}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-51480}, publisher = {Universit{\"a}t Potsdam}, pages = {16}, year = {2011}, abstract = {Business process models are abstractions of concrete operational procedures that occur in the daily business of organizations. To cope with the complexity of these models, business process model abstraction has been introduced recently. Its goal is to derive from a detailed process model several abstract models that provide a high-level understanding of the process. While techniques for constructing abstract models are reported in the literature, little is known about the relationships between process instances and abstract models. In this paper we show how the state of an abstract activity can be calculated from the states of related, detailed process activities as they happen. The approach uses activity state propagation. With state uniqueness and state transition correctness we introduce formal properties that improve the understanding of state propagation. Algorithms to check these properties are devised. Finally, we use behavioral profiles to identify and classify behavioral inconsistencies in abstract process models that might occur, once activity state propagation is used.}, language = {en} } @article{WeidlichPolyvyanyyDesaietal.2011, author = {Weidlich, Matthias and Polyvyanyy, Artem and Desai, Nirmit and Mendling, Jan and Weske, Mathias}, title = {Process compliance analysis based on behavioural profiles}, series = {Information systems}, volume = {36}, journal = {Information systems}, number = {7}, publisher = {Elsevier}, address = {Oxford}, issn = {0306-4379}, doi = {10.1016/j.is.2011.04.002}, pages = {1009 -- 1025}, year = {2011}, abstract = {Process compliance measurement is getting increasing attention in companies due to stricter legal requirements and market pressure for operational excellence. In order to judge on compliance of the business processing, the degree of behavioural deviation of a case, i.e., an observed execution sequence, is quantified with respect to a process model (referred to as fitness, or recall). Recently, different compliance measures have been proposed. Still, nearly all of them are grounded on state-based techniques and the trace equivalence criterion, in particular. As a consequence, these approaches have to deal with the state explosion problem. In this paper, we argue that a behavioural abstraction may be leveraged to measure the compliance of a process log - a collection of cases. To this end, we utilise causal behavioural profiles that capture the behavioural characteristics of process models and cases, and can be computed efficiently. We propose different compliance measures based on these profiles, discuss the impact of noise in process logs on our measures, and show how diagnostic information on non-compliance is derived. As a validation, we report on findings of applying our approach in a case study with an international service provider.}, language = {en} } @article{WeidlichPolyvyanyyMendlingetal.2011, author = {Weidlich, Matthias and Polyvyanyy, Artem and Mendling, Jan and Weske, Mathias}, title = {Causal behavioural profiles - efficient computation, applications, and evaluation}, series = {Fundamenta informaticae}, volume = {113}, journal = {Fundamenta informaticae}, number = {3-4}, publisher = {IOS Press}, address = {Amsterdam}, issn = {0169-2968}, doi = {10.3233/FI-2011-614}, pages = {399 -- 435}, year = {2011}, abstract = {Analysis of behavioural consistency is an important aspect of software engineering. In process and service management, consistency verification of behavioural models has manifold applications. For instance, a business process model used as system specification and a corresponding workflow model used as implementation have to be consistent. Another example would be the analysis to what degree a process log of executed business operations is consistent with the corresponding normative process model. Typically, existing notions of behaviour equivalence, such as bisimulation and trace equivalence, are applied as consistency notions. Still, these notions are exponential in computation and yield a Boolean result. In many cases, however, a quantification of behavioural deviation is needed along with concepts to isolate the source of deviation. In this article, we propose causal behavioural profiles as the basis for a consistency notion. These profiles capture essential behavioural information, such as order, exclusiveness, and causality between pairs of activities of a process model. Consistency based on these profiles is weaker than trace equivalence, but can be computed efficiently for a broad class of models. In this article, we introduce techniques for the computation of causal behavioural profiles using structural decomposition techniques for sound free-choice workflow systems if unstructured net fragments are acyclic or can be traced back to S-or T-nets. We also elaborate on the findings of applying our technique to three industry model collections.}, language = {en} }