@article{ZhangChenSiemiatkowskaetal.2020, author = {Zhang, Youjun and Chen, Moxian and Siemiatkowska, Beata and Toleco, Mitchell Rey and Jing, Yue and Strotmann, Vivien and Zhang, Jianghua and Stahl, Yvonne and Fernie, Alisdair}, title = {A highly efficient agrobacterium-mediated method for transient gene expression and functional studies in multiple plant species}, series = {Plant Communications}, volume = {1}, journal = {Plant Communications}, number = {5}, publisher = {Science Direct}, address = {New York}, issn = {2590-3462}, pages = {12}, year = {2020}, abstract = {Although the use of stable transformation technology has led to great insight into gene function, its application in high-throughput studies remains arduous. Agro-infiltration have been widely used in species such as Nicotiana benthamiana for the rapid detection of gene expression and protein interaction analysis, but this technique does not work efficiently in other plant species, including Arabidopsis thaliana. As an efficient high-throughput transient expression system is currently lacking in the model plant species A. thaliana, we developed a method that is characterized by high efficiency, reproducibility, and suitability for transient expression of a variety of functional proteins in A. thaliana and 7 other plant species, including Brassica oleracea, Capsella rubella, Thellungiella salsuginea, Thellungiella halophila, Solanum tuberosum, Capsicum annuum, and N. benthamiana. Efficiency of this method was independently verified in three independent research facilities, pointing to the robustness of this technique. Furthermore, in addition to demonstrating the utility of this technique in a range of species, we also present a case study employing this method to assess protein-protein interactions in the sucrose biosynthesis pathway in Arabidopsis.}, language = {en} } @article{ZhangSunFettkeetal.2014, author = {Zhang, Youjun and Sun, Feng and Fettke, J{\"o}rg and Schoettler, Mark Aurel and Ramsden, Lawrence and Fernie, Alisdair and Lim, Boon Leong}, title = {Heterologous expression of AtPAP2 in transgenic potato influences carbon metabolism and tuber development}, series = {FEBS letters : the journal for rapid publication of short reports in molecular biosciences}, volume = {588}, journal = {FEBS letters : the journal for rapid publication of short reports in molecular biosciences}, number = {20}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0014-5793}, doi = {10.1016/j.febslet.2014.08.019}, pages = {3726 -- 3731}, year = {2014}, abstract = {Changes in carbon flow and sink/source activities can affect floral, architectural, and reproductive traits of plants. In potato, overexpression (OE) of the purple acid phosphatase 2 of Arabidopsis (AtPAP2) resulted in earlier flowering, faster growth rate, increased tubers and tuber starch content, and higher photosynthesis rate. There was a significant change in sucrose, glucose and fructose levels in leaves, phloem and sink biomass of the OE lines, consistent with an increased expression of sucrose transporter 1 (StSUT1). Furthermore, the expression levels and enzyme activity of sucrose-phosphate synthase (SPS) were also significantly increased in the OE lines. These findings strongly suggest that higher carbon supply from the source and improved sink strength can improve potato tuber yield. (C) 2014 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.}, language = {en} } @misc{ZhangLenhard2017, author = {Zhang, Yunming and Lenhard, Michael}, title = {Exiting Already? Molecular Control of Cell-Proliferation Arrest in Leaves: Cutting Edge}, series = {Molecular plant}, volume = {10}, journal = {Molecular plant}, publisher = {Cell Press}, address = {Cambridge}, issn = {1674-2052}, doi = {10.1016/j.molp.2017.05.004}, pages = {909 -- 911}, year = {2017}, language = {en} } @article{ZhangRammingHeinkeetal.2019, author = {Zhang, Yunming and Ramming, Anna and Heinke, Lisa and Altschmied, Lothar and Slotkin, R. Keith and Becker, J{\"o}rg D. and Kappel, Christian and Lenhard, Michael}, title = {The poly(A) polymerase PAPS1 interacts with the RNA-directed DNA-methylation pathway in sporophyte and pollen development}, series = {The plant journal}, volume = {99}, journal = {The plant journal}, number = {4}, publisher = {Wiley}, address = {Hoboken}, issn = {0960-7412}, doi = {10.1111/tpj.14348}, pages = {655 -- 672}, year = {2019}, abstract = {RNA-based processes play key roles in the regulation of eukaryotic gene expression. This includes both the processing of pre-mRNAs into mature mRNAs ready for translation and RNA-based silencing processes, such as RNA-directed DNA methylation (RdDM). Polyadenylation of pre-mRNAs is one important step in their processing and is carried out by three functionally specialized canonical nuclear poly(A) polymerases in Arabidopsis thaliana. Null mutations in one of these, termed PAPS1, result in a male gametophytic defect. Using a fluorescence-labelling strategy, we have characterized this defect in more detail using RNA and small-RNA sequencing. In addition to global defects in the expression of pollen-differentiation genes, paps1 null-mutant pollen shows a strong overaccumulation of transposable element (TE) transcripts, yet a depletion of 21- and particularly 24-nucleotide-long short interfering RNAs (siRNAs) and microRNAs (miRNAs) targeting the corresponding TEs. Double-mutant analyses support a specific functional interaction between PAPS1 and components of the RdDM pathway, as evident from strong synergistic phenotypes in mutant combinations involving paps1, but not paps2 paps4, mutations. In particular, the double-mutant of paps1 and rna-dependent rna polymerase 6 (rdr6) shows a synergistic developmental phenotype disrupting the formation of the transmitting tract in the female gynoecium. Thus, our findings in A. thaliana uncover a potentially general link between canonical poly(A) polymerases as components of mRNA processing and RdDM, reflecting an analogous interaction in fission yeast.}, language = {en} } @article{ZhangWangKuangetal.2022, author = {Zhang, Zhihao and Wang, Ting and Kuang, Jin and Herold, Fabian and Ludyga, Sebastian and Li, Jingming and Hall, Daniel L. and Taylor, Alyx and Healy, Sean and Yeung, Albert S. and Kramer, Arthur F. and Zou, Liye}, title = {The roles of exercise tolerance and resilience in the effect of physical activity on emotional states among college students}, series = {International Journal of Clinical and Health Psychology}, volume = {22}, journal = {International Journal of Clinical and Health Psychology}, number = {3}, publisher = {Elsevier}, address = {New York}, issn = {1697-2600}, doi = {10.1016/j.ijchp.2022.100312}, pages = {8}, year = {2022}, abstract = {Background/objective: Negative emotional states, such as depression, anxiety, and stress challenge health care due to their long-term consequences for mental disorders. Accumulating evidence indicates that regular physical activity (PA) can positively influence negative emotional states. Among possible candidates, resilience and exercise tolerance in particular have the potential to partly explain the positive effects of PA on negative emotional states. Thus, the aim of this study was to investigate the association between PA and negative emotional states, and further determine the mediating effects of exercise tolerance and resilience in such a relationship. Method: In total, 1117 Chinese college students (50.4\% female, Mage=18.90, SD=1.25) completed a psychosocial battery, including the 21-item Depression Anxiety Stress Scale (DASS-21), the Connor-Davidson Resilience Scale (CD-RISC), the Preference for and Tolerance of the Intensity of Exercise Questionnaire (PRETIE-Q), and the International Physical Activity Questionnaire short form (IPAQ-SF). Regression analysis was used to identify the serial multiple mediation, controlling for gender, age and BMI. Results: PA, exercise intensity-tolerance, and resilience were significantly negatively correlated with negative emotional states (Ps<.05). Further, exercise tolerance and resilience partially mediated the relationship between PA and negative emotional states. Conclusions: Resilience and exercise intensity-tolerance can be achieved through regularly engaging in PA, and these newly observed variables play critical roles in prevention of mental illnesses, especially college students who face various challenges. Recommended amount of PA should be incorporated into curriculum or sport clubs within a campus environment.}, language = {en} } @article{ZhangWielandReicheetal.2012, author = {Zhang, Zhuo-dong and Wieland, Ralf and Reiche, Matthias and Funk, Roger and Hoffmann, Carsten and Li, Yong and Sommer, Michael}, title = {A computational fluid dynamics model for wind simulation: model implementation and experimental validation}, series = {Journal of Zhejiang University : an international journal ; Science A, Applied physics \& engineering : an international applied physics \& engineering journal}, volume = {13}, journal = {Journal of Zhejiang University : an international journal ; Science A, Applied physics \& engineering : an international applied physics \& engineering journal}, number = {4}, publisher = {Zhejiang University Press}, address = {Hangzou}, issn = {1673-565X}, doi = {10.1631/jzus.A1100231}, pages = {274 -- 283}, year = {2012}, abstract = {To provide physically based wind modelling for wind erosion research at regional scale, a 3D computational fluid dynamics (CFD) wind model was developed. The model was programmed in C language based on the Navier-Stokes equations, and it is freely available as open source. Integrated with the spatial analysis and modelling tool (SAMT), the wind model has convenient input preparation and powerful output visualization. To validate the wind model, a series of experiments was conducted in a wind tunnel. A blocking inflow experiment was designed to test the performance of the model on simulation of basic fluid processes. A round obstacle experiment was designed to check if the model could simulate the influences of the obstacle on wind field. Results show that measured and simulated wind fields have high correlations, and the wind model can simulate both the basic processes of the wind and the influences of the obstacle on the wind field. These results show the high reliability of the wind model. A digital elevation model (DEM) of an area (3800 m long and 1700 m wide) in the Xilingele grassland in Inner Mongolia (autonomous region, China) was applied to the model, and a 3D wind field has been successfully generated. The clear implementation of the model and the adequate validation by wind tunnel experiments laid a solid foundation for the prediction and assessment of wind erosion at regional scale.}, language = {en} } @phdthesis{Zhang2011, author = {Zhang, Zhuodong}, title = {A regional scale study of wind erosion in the Xilingele grassland based on computational fluid dynamics}, address = {Potsdam}, pages = {143 S.}, year = {2011}, language = {en} } @article{ZhangWielandReicheetal.2012, author = {Zhang, Zhuodong and Wieland, Ralf and Reiche, Matthias and Funk, Roger and Hoffmann, Carsten and Li, Yong and Sommer, Michael}, title = {Identifying sensitive areas to wind erosion in the xilingele grassland by computational fluid dynamics modelling}, series = {Ecological informatics : an international journal on ecoinformatics and computational ecolog}, volume = {8}, journal = {Ecological informatics : an international journal on ecoinformatics and computational ecolog}, number = {5}, publisher = {Elsevier}, address = {Amsterdam}, issn = {1574-9541}, doi = {10.1016/j.ecoinf.2011.12.002}, pages = {37 -- 47}, year = {2012}, abstract = {In order to identify the areas in the Xilingele grassland which are sensitive to wind erosion, a computational fluid dynamics model (CFD-WEM) was used to simulate the wind fields over a region of 37 km(2) which contains different topography and land use types. Previous studies revealed the important influences of topography and land use on wind erosion in the Xilingele grassland. Topography influences wind fields at large scale, and land use influences wind fields near the ground. Two steps were designed to implement the CFD wind simulation, and they were respectively to simulate the influence of topography and surface roughness on the wind. Digital elevation model (DEM) and surface roughness length were the key inputs for the CFD simulation. The wind simulation by CFD-WEM was validated by a wind data set which was measured simultaneously at six positions in the field. Three scenarios with different wind velocities were designed based on observed dust storm events, and wind fields were simulated according to these scenarios to predict the sensitive areas to wind erosion. General assumptions that cropland is the most sensitive area to wind erosion and heavily and moderately grazed grasslands are both sensitive etc. can be refined by the modelling of CFD-WEM. Aided by the results of this study, the land use planning and protection measures against wind erosion can be more efficient. Based on the case study in the Xilingele grassland, a method of regional wind erosion assessment aided by CFD wind simulation is summarized. The essence of this method is a combination of CFD wind simulation and determination of threshold wind velocity for wind erosion. Because of the physically-based simulation and the flexibility of the method, it can be generalised to other regions.}, language = {en} } @article{ZhangWielandReicheetal.2011, author = {Zhang, Zhuodong and Wieland, Ralf and Reiche, Matthias and Funk, Roger and Hoffmann, Carsten and Li, Yong and Sommer, Michael}, title = {Wind modelling for wind erosion research by open source computational fluid dynamics}, series = {Ecological informatics : an international journal on ecoinformatics and computational ecolog}, volume = {6}, journal = {Ecological informatics : an international journal on ecoinformatics and computational ecolog}, number = {5}, publisher = {Elsevier}, address = {Amsterdam}, issn = {1574-9541}, doi = {10.1016/j.ecoinf.2011.02.001}, pages = {316 -- 324}, year = {2011}, abstract = {The open source computational fluid dynamics (CFD) wind model (CFD-WEM) for wind erosion research in the Xilingele grassland in Inner Mongolia (autonomous region, China) is compared with two open source CFD models Gerris and OpenFOAM. The evaluation of these models was made according to software technology, implemented methods, handling, accuracy and calculation speed. All models were applied to the same wind tunnel data set. Results show that the simplest CFD-WEM has the highest calculation speed with acceptable accuracy, and the most powerful OpenFOAM produces the simulation with highest accuracy and the lowest calculation speed. Gerris is between CFD-WEM and OpenFOAM. It calculates faster than OpenFOAM, and it is capable to solve different CFD problems. CFD-WEM is the optimal model to be further developed for wind erosion research in Inner Mongolia grassland considering its efficiency and the uncertainties of other input data. However, for other applications using CFD technology, Gerris and OpenFOAM can be good choices. This paper shows the powerful capability of open source CFD software in wind erosion study, and advocates more involvement of open source technology in wind erosion and related ecological researches.}, language = {en} } @phdthesis{Zhao2010, author = {Zhao, Li}, title = {Sustainable approaches towards novel nitrogen-doped carbonaceous structures}, address = {Potsdam}, pages = {136 S. : graph. Darst.}, year = {2010}, language = {en} } @phdthesis{Zhao2015, author = {Zhao, Liming}, title = {Characterization genes involved in leaf development and senescence of arabidopsis}, school = {Universit{\"a}t Potsdam}, pages = {137}, year = {2015}, language = {en} } @article{ZhaoXiaWuetal.2018, author = {Zhao, Liming and Xia, Yan and Wu, Xiao-Yuan and Schippers, Jos H. M. and Jing, Hai-Chun}, title = {Phenotypic analysis and molecular markers of leaf senescence}, series = {Plant Senescence: Methods and Protocols}, volume = {1744}, journal = {Plant Senescence: Methods and Protocols}, publisher = {Humana Press Inc.}, address = {Totowa}, isbn = {978-1-4939-7672-0}, issn = {1064-3745}, doi = {10.1007/978-1-4939-7672-0_3}, pages = {35 -- 48}, year = {2018}, abstract = {The process of leaf senescence consists of the final stage of leaf development. It has evolved as a mechanism to degrade macromolecules and micronutrients and remobilize them to other developing parts of the plant; hence it plays a central role for the survival of plants and crop production. During senescence, a range of physiological, morphological, cellular, and molecular events occur, which are generally referred to as the senescence syndrome that includes several hallmarks such as visible yellowing, loss of chlorophyll and water content, increase of ion leakage and cell death, deformation of chloroplast and cell structure, as well as the upregulation of thousands of so-called senescence-associated genes (SAGs) and downregulation of photosynthesis-associated genes (PAGs). This chapter is devoted to methods characterizing the onset and progression of leaf senescence at the morphological, physiological, cellular, and molecular levels. Leaf senescence normally progresses in an age-dependent manner but is also induced prematurely by a variety of environmental stresses in plants. Focused on the hallmarks of the senescence syndrome, a series of protocols is described to asses quantitatively the senescence process caused by developmental cues or environmental perturbations. We first briefly describe the senescence process, the events associated with the senescence syndrome, and the theories and methods to phenotype senescence. Detailed protocols for monitoring senescence in planta and in vitro, using the whole plant and the detached leaf, respectively, are presented. For convenience, most of the protocols use the model plant species Arabidopsis and rice, but they can be easily extended to other plants.}, language = {en} } @article{ZhaoKuhnOyeetal.2014, author = {Zhao, Peng and Kuhn, Daniela and Oye, Volker and Cesca, Simone}, title = {Evidence for tensile faulting deduced from full waveform moment tensor inversion during the stimulation of the Basel enhanced geothermal system}, series = {Geothermics : an international journal of geothermal research and its applications}, volume = {52}, journal = {Geothermics : an international journal of geothermal research and its applications}, publisher = {Elsevier}, address = {Oxford}, issn = {0375-6505}, doi = {10.1016/j.geothermics.2014.01.003}, pages = {74 -- 83}, year = {2014}, abstract = {Our study presents the results of a moment tensor inversion of 19 microseismic events with M-L between 2.0 and 3.4, associated with the stimulation operation of an enhanced geothermal reservoir in Basel, Switzerland, in 2006. We adopt a three-step procedure to retrieve point source solution parameters based on full waveform inversion. The inversion is performed by fitting displacement amplitude spectra and displacement seismograms in the first and second step, respectively, assuming a double couple source model and thus obtaining focal solutions for all 19 events. Our results are in agreement with focal mechanisms from a previous study, which employed P wave first-motion polarities from more than 40 stations, whereas our solutions are achieved using full waveform data recorded by less than 10 surface stations. In the last step, a full moment tensor inversion is performed. The results from the moment tensor inversion show an improvement on the waveform fitting compared to the double couple models, which is verified by an F-test. We investigate the stability of the moment tensor solutions by employing different velocity models. The isotropic components of the moment tensor solutions of some events are not negligible, suggesting source volume changes due to fluid injection. Events with significant isotropic components occurred mainly during the stimulation phase and close to the injection well. On the other hand, events that occurred in the post-stimulation phase are predominantly pure shear failure and located further away from the well bore. These spatio-temporal patterns can be explained by the influence of pore pressure variations during and after the hydraulic stimulation at the geothermal site. (C) 2014 Elsevier Ltd. All rights reserved.}, language = {en} } @article{ZhaoDunlopQiuetal.2014, author = {Zhao, Qiang and Dunlop, John William Chapman and Qiu, Xunlin and Huang, Feihe and Zhang, Zibin and Heyda, Jan and Dzubiella, Joachim and Antonietti, Markus and Yuan, Jiayin}, title = {An instant multi-responsive porous polymer actuator driven by solvent molecule sorption}, series = {Nature Communications}, volume = {5}, journal = {Nature Communications}, publisher = {Nature Publ. Group}, address = {London}, issn = {2041-1723}, doi = {10.1038/ncomms5293}, pages = {8}, year = {2014}, abstract = {Fast actuation speed, large-shape deformation and robust responsiveness are critical to synthetic soft actuators. A simultaneous optimization of all these aspects without trade-offs remains unresolved. Here we describe porous polymer actuators that bend in response to acetone vapour (24 kPa, 20 degrees C) at a speed of an order of magnitude faster than the state-of-the-art, coupled with a large-scale locomotion. They are meanwhile multi-responsive towards a variety of organic vapours in both the dry and wet states, thus distinctive from the traditional gel actuation systems that become inactive when dried. The actuator is easy-to-make and survives even after hydrothermal processing (200 degrees C, 24 h) and pressing-pressure (100 MPa) treatments. In addition, the beneficial responsiveness is transferable, being able to turn 'inert' objects into actuators through surface coating. This advanced actuator arises from the unique combination of porous morphology, gradient structure and the interaction between solvent molecules and actuator materials.}, language = {en} } @article{ZhaoYanLiuetal.2022, author = {Zhao, Siqi Q. and Yan, Huirong and Liu, Terry Z. and Liu, Mingzhe and Wang, Huizi}, title = {Multispacecraft analysis of the properties of magnetohydrodynamic fluctuations in Sub-Alfvenic solar wind turbulence at 1 au}, series = {The astrophysical journal : an international review of spectroscopy and astronomical physics}, volume = {937}, journal = {The astrophysical journal : an international review of spectroscopy and astronomical physics}, number = {2}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, issn = {0004-637X}, doi = {10.3847/1538-4357/ac822e}, pages = {14}, year = {2022}, abstract = {We present observations of three-dimensional magnetic power spectra in wavevector space to investigate the anisotropy and scalings of sub-Alfvenic solar wind turbulence at magnetohydrodynamic (MHD) scale using the Magnetospheric Multiscale spacecraft. The magnetic power distributions are organized in a new coordinate determined by wavevectors ((kappa) over cap) and background magnetic field ((b) over cap (0)) in Fourier space. This study utilizes two approaches to determine wavevectors: the singular value decomposition method and multispacecraft timing analysis. The combination of the two methods allows an examination of the properties of magnetic field fluctuations in terms of mode compositions without any spatiotemporal hypothesis. Observations show that fluctuations (delta B-perpendicular to 1) in the direction perpendicular to (kappa) over cap and (b) over cap (0) prominently cascade perpendicular to (b) over cap (0), and such anisotropy increases with wavenumbers. The reduced power spectra of 6.8 11 follow Goldreich-Sridhar scalings: (P) over cap (k(perpendicular to)) proportional to k(perpendicular to)(-5/3) and (P) over cap (k(parallel to)) proportional to k(parallel to)(-2). In contrast, fluctuations within the (k) over cap(b) over cap (0) plane show isotropic behaviors: perpendicular power distributions are approximately the same as parallel distributions. The reduced power spectra of fluctuations within the (k) over cap(b) over cap (0) plane follow the scalings (P) over cap (k(perpendicular to)) proportional to k(perpendicular to)(-3/2) and (P) over cap (k(parallel to)) proportional to k(parallel to)(-3/2). Comparing frequency-wavevector spectra with theoretical dispersion relations of MHD modes, we find that delta B-perpendicular to 1 are probably associated with Alfven modes. On the other hand, magnetic field fluctuations within the (k) over cap(b) over cap (0) plane more likely originate from fast modes based on their isotropic behaviors. The observations of anisotropy and scalings of different magnetic field components are consistent with the predictions of current compressible MHD theory. Moreover, for the Alfvenic component, the ratio of cascading time to the wave period is found to be a factor of a few, consistent with critical balance in the strong turbulence regime. These results are valuable for further studies of energy compositions of plasma turbulence and their effects on energetic particle transport.}, language = {en} } @phdthesis{Zhao2021, author = {Zhao, Xueru}, title = {Palaeoclimate and palaeoenvironment evolution from the last glacial maximum into the early holocene (23-8 ka BP) derived from Lago Grande di Monticchio sediment record (S Italy)}, pages = {123}, year = {2021}, language = {en} } @article{ZhaoHerzschuh2009, author = {Zhao, Yan and Herzschuh, Ulrike}, title = {Modern pollen representation of source vegetation in the Qaidam Basin and surrounding mountains, north-eastern Tibetan Plateau}, issn = {0939-6314}, doi = {10.1007/s00334-008-0201-7}, year = {2009}, abstract = {We use a data set of 35 surface pollen samples from lake sediments, moss polsters and top soils on the north- eastern Tibetan Plateau to explore the relationship between modern pollen assemblages and contemporary vegetation patterns. The surface pollen transect spanned four vegetation zones--alpine meadow, steppe, steppe desert and desert-- under different climatic/elevational conditions. Relative representation (R (rel)) values and Principal Components Analysis (PCA) were used to determine the relationships between modern pollen and vegetation and regional climate gradients. The results show that the main vegetation zones along the regional and elevational transects can be distinguished by their modern pollen spectra. Relative to Poaceae, a high representation of Artemisia, Nitraria and Chenopodiaceae was found, while Cyperaceae and Gentiana showed values in the middle range, and Ranunculaceae, Asteraceae, Ephedra and Fabaceae had low relative representation values. PCA results indicate a high correlation between the biogeoclimatic zones and annual precipitation and annual temperature and July temperature. The Artemisia/ Chenopodiaceae ratio and the Artemisia/Cyperaceae ratio are useful tools for qualitative and semi-quantitative palaeoenvironmental reconstruction on the north-eastern Tibetan Plateau. Surface lake sediments are found to have different palynomorph spectra from moss cushion and soil samples, reflecting the larger pollen source area in the contemporary vegetation for lakes.}, language = {en} } @phdthesis{Zhao2021, author = {Zhao, Yuhang}, title = {Synthesis and surface functionalization on plasmonic nanoparticles for optical applications}, school = {Universit{\"a}t Potsdam}, pages = {VIII, 149}, year = {2021}, abstract = {This thesis focuses on the synthesis of novel functional materials based on plasmonic nanoparticles. Three systems with targeted surface modification and functionalization have been designed and synthesized, involving modified perylenediimide doped silica-coated silver nanowires, polydopamine or TiO2 coated gold-palladium nanorods and thiolated poly(ethylene glycol) (PEG-SH)/dodecanethiol (DDT) modified silver nanospheres. Their possible applications as plasmonic resonators, chiral sensors as well as photo-catalysts have been studied. In addition, the interaction between silver nanospheres and 2,3,5,6-Tetrafluoro-7,7,8,8-tetracyanoquinodimethane (F4TCNQ) molecules has also been investigated in detail. In the first part of the thesis, surface modification on Ag nanowires (NWs) with optimized silica coating through a modified St{\"o}ber method has been firstly conducted, employing sodium hydroxide (NaOH) to replace ammonia solution (NH4OH). The coated silver nanowires with a smooth silica shell have been investigated by single-particle dark-field scattering spectroscopy, transmission electron microscopy and electron-energy loss spectroscopy to characterize the morphologies and structural components. The silica-coated silver nanowires can be further functionalized with fluorescent molecules in the silica shell via a facile one-step coating method. The as-synthesized nanowire is further coupled with a gold nanosphere by spin-coating for the application of the sub-diffractional chiral sensor for the first time. The exciton-plasmon-photon interconversion in the system eases the signal detection in the perfectly matched 1D nanostructure and contributes to the high contrast of the subwavelength chiral sensing for the polarized light. In the second part of the thesis, dumbbell-shaped Au-Pd nanorods coated with a layer of polydopamine (PDA) or titanium dioxide (TiO2) have been constructed. The PDA- and TiO2- coated Au-Pd nanorods show a strong photothermal conversion performance under NIR illumination. Moreover, the catalytic performance of the particles has been investigated using the reduction of 4-nitrophenol (4-NP) as the model reaction. Under light irradiation, the PDA-coated Au-Pd nanorods exhibit a superior catalytic activity by increasing the reaction rate constant of 3 times. The Arrhenius-like behavior of the reaction with similar activation energies in the presence and absence of light irradiation indicates the photoheating effect to be the dominant mechanism of the reaction acceleration. Thus, we attribute the enhanced performance of the catalysis to the strong photothermal effect that is driven by the optical excitation of the gold surface plasmon as well as the synergy with the PDA layer. In the third part, the kinetic study on the adsorption of 2,3,5,6-Tetrafluoro-7,7,8,8-tetracyanoquino-dimethane (F4TCNQ) on the surface of Ag nanoparticles (Ag NPs) in chloroform has been reported in detail. Based on the results obtained from the UV-vis-NIR absorption spectroscopy, cryogenic transmission electron microscopy (cryo-TEM), scanning nano-beam electron diffraction (NBED) and electron energy loss spectroscopy (EELS), a two-step interaction kinetics has been proposed for the Ag NPs and F4TCNQ molecules. It includes the first step of electron transfer from Ag NPs to F4TCNQ indicated by the ionization of F4TCNQ, and the second step of the formation of Ag-F4TCNQ complex. The whole process has been followed via UV-vis-NIR absorption spectroscopy, which reveals distinct kinetics at two stages: the instantaneous ionization and the long-term complex formation. The kinetics and the influence of the molar ratio of Ag NPs/F4TCNQ molecules on the interaction between Ag NPs and F4TCNQ molecules in the organic solution are reported herein for the first time. Furthermore, the control experiment with silica-coated Ag NPs indicates that the charge transfer at the surface between Ag NPs and F4TCNQ molecules has been prohibited by a silica layer of 18 nm.}, language = {en} } @article{ZhaoOpitzEljarratetal.2021, author = {Zhao, Yuhang and Opitz, Andreas and Eljarrat, Alberto and Kochovski, Zdravko and Koch, Christoph and Koch, Norbert and Lu, Yan}, title = {Kinetic study on the adsorption of 2,3,5,6-tetrafluoro-7,7,8,8-tetracyanoquinodimethane on Ag nanoparticles in chloroform}, series = {ACS applied nano materials}, volume = {4}, journal = {ACS applied nano materials}, number = {11}, publisher = {American Chemical Society}, address = {Washington}, issn = {2574-0970}, doi = {10.1021/acsanm.1c02153}, pages = {11625 -- 11635}, year = {2021}, abstract = {In this study, the kinetics of the adsorption of 2,3,5,6-tetrafluoro-7,7,8,8-tetracyanoquinodimethane (F(4)TCNQ) on the surface of Ag nanoparticles (Ag NPs) in chloroform has been intensively investigated, as molecular doping is known to play a crucial role in organic electronic devices. Based on the results obtained from UV-visible (vis)-near-infrared (NIR) absorption spectroscopy, cryogenic transmission electron microscopy, scanning nanobeam electron diffraction, and electron energy loss spectroscopy, a two-step interaction kinetics has been proposed for the Ag NPs and F(4)TCNQ molecules, which includes the first step of electron transfer from Ag NPs to F(4)TCNQ indicated by the ionization of F(4)TCNQ and the second step of the formation of a Ag-F(4)TCNQ complex. The whole process has been followed via UV-vis-NIR absorption spectroscopy, which reveals distinct kinetics at two stages: the instantaneous ionization and the long-term complex formation. The kinetics and the influence of the molar ratio of Ag NPs/F(4)TCNQ molecules on the interaction between Ag NPs and F(4)TCNQ molecules in an organic solution are reported herein for the first time. Furthermore, the control experiment with silica-coated Ag NPs manifests that the charge transfer at the surface between Ag NPs and F(4)TCNQ molecules is prohibited by a silica layer of 18 nm.}, language = {en} } @article{ZhaoSarhanEljarratetal.2022, author = {Zhao, Yuhang and Sarhan, Radwan Mohamed and Eljarrat, Alberto and Kochovski, Zdravko and Koch, Christoph and Schmidt, Bernd and Koopman, Wouter-Willem Adriaan and Lu, Yan}, title = {Surface-functionalized Au-Pd nanorods with enhanced photothermal conversion and catalytic performance}, series = {ACS applied materials \& interfaces}, volume = {14}, journal = {ACS applied materials \& interfaces}, number = {15}, publisher = {American Chemical Society}, address = {Washington, DC}, issn = {1944-8244}, doi = {10.1021/acsami.2c00221}, pages = {17259 -- 17272}, year = {2022}, abstract = {Bimetallic nanostructures comprising plasmonic and catalytic components have recently emerged as a promising approach to generate a new type of photo-enhanced nanoreactors. Most designs however concentrate on plasmon-induced charge separation, leaving photo-generated heat as a side product. This work presents a photoreactor based on Au-Pd nanorods with an optimized photothermal conversion, which aims to effectively utilize the photo-generated heat to increase the rate of Pd-catalyzed reactions. Dumbbell-shaped Au nanorods were fabricated via a seed-mediated growth method using binary surfactants. Pd clusters were selectively grown at the tips of the Au nanorods, using the zeta potential as a new synthetic parameter to indicate the surfactant remaining on the nanorod surface. The photothermal conversion of the Au-Pd nanorods was improved with a thin layer of polydopamine (PDA) or TiO2. As a result, a 60\% higher temperature increment of the dispersion compared to that for bare Au rods at the same light intensity and particle density could be achieved. The catalytic performance of the coated particles was then tested using the reduction of 4-nitrophenol as the model reaction. Under light, the PDA-coated Au-Pd nanorods exhibited an improved catalytic activity, increasing the reaction rate by a factor 3. An analysis of the activation energy confirmed the photoheating effect to be the dominant mechanism accelerating the reaction. Thus, the increased photothermal heating is responsible for the reaction acceleration. Interestingly, the same analysis shows a roughly 10\% higher reaction rate for particles under illumination compared to under dark heating, possibly implying a crucial role of localized heat gradients at the particle surface. Finally, the coating thickness was identified as an essential parameter determining the photothermal conversion efficiency and the reaction acceleration.}, language = {en} }