@article{BergholzHeymannSchenketal.1997, author = {Bergholz, Andre and Heymann, Stephan and Schenk, J{\"o}rg A. and Freytag, Johann Christoph}, title = {Sequence comparison using a relational database approach}, isbn = {0-8186-8114-4}, year = {1997}, language = {en} } @article{BergholzHeymannSchenketal.2001, author = {Bergholz, Andr{\´e} and Heymann, Stephan and Schenk, J{\"o}rg A. and Freytag, Johann Christoph}, title = {Biological sequences integrated: a relational database approach}, year = {2001}, abstract = {Over the last decade the modeling and the storage of biological data has been a topic of wide interest for scientists dealing with biological and biomedical research. Currently most data is still stored in text files which leads to data redundancies and file chaos. In this paper we show how to use relational modeling techniques and relational database technology for modeling and storing biological sequence data, i.e. for data maintained in collections like EMBL or SWISS-PROT to better serve the needs for these application domains. For this reason we propose a two step approach. First, we model the structure (and therefore the meaning of the) data using an Entity-Relationship approach. The ER model leads to a clean design of a relational database schema for storing and retrieving the DNA and protein data extracted from various sources. Our approach provides the clean basis for building complex biological applications that are more amenable to changes and software ports than their file-base counterparts.}, language = {en} } @article{DaskalowBoisguerinJandrigetal.2010, author = {Daskalow, Katjana and Boisguerin, Prisca and Jandrig, Burkhard and van Landeghem, Frank K. H. and Volkmer, Rudolf and Micheel, Burkhard and Schenk, J{\"o}rg A.}, title = {Generation of an antibody against the protein phosphatase 1 inhibitor KEPI and characterization of the epitope}, issn = {0250-7005}, year = {2010}, abstract = {A monoclonal antibody against the potential tumor suppressor kinase-enhanced protein phosphatase 1 (PP1) inhibitor KEPI (PPP1R14C) was generated and characterized. Human KEPI was expressed in Escherichia coli and used to immunize Balb/c mice. Using hybridoma technology, one clone, G18AF8, was isolated producing antibodies which bound specifically to the KEPI protein in ELISA, immunoblotting and flow cytometry. The antibody was also successfully applied to stain KEPI protein in paraffin sections of human brain. The epitope was mapped using peptide array technology and confirmed as GARVFFQSPR. This corresponds to the N-terminal region of KEPI. Amino acid substitution analysis revealed that two residues, F and Q, are essential for binding. Affinity of binding was determined by competitive ELISA as 1 mu M. In Western blot assays testing G18AF8 antibody on brain samples of several species, reactivity with hamster, rat and chicken samples was found, suggesting a broad homology of this KEPI epitope in vertebrates. This antibody could be used in expression studies at the protein level e.g. in tumor tissues.}, language = {en} } @article{DippongCarlLenzetal.2017, author = {Dippong, Martin and Carl, Peter and Lenz, Christine and Schenk, J{\"o}rg A. and Hoffmann, Katrin and Schwaar, Timm and Schneider, Rudolf J. and Kuhne, Maren}, title = {Hapten-Specific Single-Cell Selection of Hybridoma Clones by Fluorescence-Activated Cell Sorting for the Generation of Monoclonal Antibodies}, series = {Analytical chemistry}, volume = {89}, journal = {Analytical chemistry}, publisher = {American Chemical Society}, address = {Washington}, issn = {0003-2700}, doi = {10.1021/acs.analchem.6b04569}, pages = {4007 -- 4012}, year = {2017}, language = {en} } @article{EisoldSellrieMemczaketal.2018, author = {Eisold, Ursula and Sellrie, Frank and Memczak, Henry and Andersson, Anika and Schenk, J{\"o}rg A. and Kumke, Michael Uwe}, title = {Dye tool box for a fluorescence enhancement immunoassay}, series = {Bioconjugate chemistry}, volume = {29}, journal = {Bioconjugate chemistry}, number = {1}, publisher = {American Chemical Society}, address = {Washington}, issn = {1043-1802}, doi = {10.1021/acs.bioconjchem.7b00731}, pages = {203 -- 214}, year = {2018}, abstract = {Immunochemical analytical methods are very successful in clinical diagnostics and are nowadays also emerging in the control of food as well as monitoring of environmental issues. Among the different immunoassays, luminescence based formats are characterized by their outstanding sensitivity making this format especially attractive for future applications. The need for multiparameter detection capabilities calls for a tool box of dye labels in order to transduce the biochemical reaction into an optically detectable signal. Here, in a multiparameter approach each analyte may be detected by a different dye with a unique emission color (covering the blue to red spectral range) or a unique luminescence decay kinetics. In the case of a competitive immunoassay format for each of the different dye labels an individual antibody would be needed. In the present paper a slightly modified approach is presented using a 7-aminocoumarin unit as the basic antigen against which highly specific antibodies were generated. Leaving the epitope region in the dyes unchanged but introducing a side group in positon 3 of the coumarin system allowed us to tune the optical properties of the coumarin dyes without the necessity of new antibody generation. Upon modification of the parent coumarin unit the full spectral range from blue to deep red was accessed. In the manuscript the photophysical characterization of the coumarin derivatives and their corresponding immunocomplexes with two highly specific antibodies is presented. The coumarin dyes and their immunocomplexes were characterized by steady-state and time-resolved absorption as well as emission spectroscopy. Moreover, fluorescence depolarization measurements were carried out to complement the data stressing the different binding modes of the two antibodies. The binding modes were evaluated using the photophysics of 7-aminocoumarins and how it was affected in the respective immunocomplexes, namely, the formation of the intramolecular charge transfer (ICT) as well as the twisted intramolecular charge transfer (TICT). In contrast to other antibody-dye pairs reported a distinct fluorescence enhancement upon formation of the antibody-dye complex up to a factor of SO was found. Because of the easy emission color tuning by tailoring the coumarin substitution for the antigen binding in nonrelevant position 3 of the parent molecule, a dye tool box is on hand which can be used in the construction of competitive multiparameter fluorescence enhancement immunoassays (FenIA).}, language = {en} } @article{EisoldSellrieSchenketal.2015, author = {Eisold, Ursula and Sellrie, Frank and Schenk, J{\"o}rg A. and Lenz, Christine and St{\"o}cklein, Walter F. M. and Kumke, Michael Uwe}, title = {Bright or dark immune complexes of anti-TAMRA antibodies for adapted fluorescence-based bioanalysis}, series = {Analytical \& bioanalytical chemistry}, volume = {407}, journal = {Analytical \& bioanalytical chemistry}, number = {12}, publisher = {Springer}, address = {Heidelberg}, issn = {1618-2642}, doi = {10.1007/s00216-015-8538-0}, pages = {3313 -- 3323}, year = {2015}, abstract = {Fluorescence labels, for example fluorescein or rhodamin derivatives, are widely used in bioanalysis applications including lateral-flow assays, PCR, and fluorescence microscopy. Depending on the layout of the particular application, fluorescence quenching or enhancement may be desired as the detection principle. Especially for multiplexed applications or high-brightness requirements, a tunable fluorescence probe can be beneficial. The alterations in the photophysics of rhodamine derivatives upon binding to two different anti-TAMRA antibodies were investigated by absorption and fluorescence-spectroscopy techniques, especially determining the fluorescence decay time and steady-state and time-resolved fluorescence anisotropy. Two monoclonal anti-TAMRA antibodies were generated by the hybridoma technique. Although surface-plasmon-resonance measurements clearly proved the high affinity of both antibodies towards 5-TAMRA, the observed effects on the fluorescence of rhodamine derivatives were very different. Depending on the anti-TAMRA antibody either a strong fluorescence quenching (G71-DC7) or a distinct fluorescence enhancement (G71-BE11) upon formation of the immune complex was observed. Additional rhodamine derivatives were used to gain further information on the binding interaction. The data reveal that such haptens as 5-TAMRA could generate different paratopes with equal binding affinities but different binding interactions, which provide the opportunity to adapt bioanalysis methods including immunoassays for optimized detection principles for the same hapten depending on the specific requirements.}, language = {en} } @article{EttlingerSchenkMicheeletal.2012, author = {Ettlinger, Julia and Schenk, J{\"o}rg A. and Micheel, Burkhard and Ehrentreich-F{\"o}rster, Eva and Gajovic-Eichelmann, Nenad}, title = {A direct competitive homogeneous immunoassay for progesterone - the Redox Quenching Immunoassay}, series = {Electroanalysis : an international journal devoted to fundamental and practical aspects of electroanalysis}, volume = {24}, journal = {Electroanalysis : an international journal devoted to fundamental and practical aspects of electroanalysis}, number = {7}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {1040-0397}, doi = {10.1002/elan.201200107}, pages = {1567 -- 1575}, year = {2012}, abstract = {A direct competitive amperometric immunoassay format for the detection of haptens and proteins was developed. The method is based on the quenching of electroactivity of ferrocenium, which is coupled to the antigen and used as the primary reporter, upon binding to a monoclonal anti-ferrocenium antibody, which is coupled to the detection antibody and used as a secondary reporter. A separation-free progesterone immunoassay with a lower detection limit of 1 ng?mL-1 (3.18 nmol?L-1) in 1?:?2 diluted blood serum was realised by combining two bifunctional conjugates, a ferrocenium-PEG-progesterone tracer and a bioconjugate of one anti-progesterone and one anti-ferrocenium antibody. The immune complex is formed within 30 s upon addition of progesterone, resulting in a total analysis time of 1.5 min.}, language = {en} } @article{GrothReszkaSchenk1996, author = {Groth, Detlef and Reszka, R. and Schenk, J{\"o}rg A.}, title = {Polyethylene glycol-mediated transformation of escherichia coli is increased by room temperature incubation}, year = {1996}, language = {en} } @article{HoangMertensWessigetal.2018, author = {Hoang, Hoa T. and Mertens, Monique and Wessig, Pablo and Sellrie, Frank and Schenk, J{\"o}rg A. and Kumke, Michael Uwe}, title = {Antibody Binding at the Liposome-Water Interface}, series = {ACS Omega}, volume = {3}, journal = {ACS Omega}, number = {12}, publisher = {American Chemical Society}, address = {Washington}, issn = {2470-1343}, doi = {10.1021/acsomega.8b03016}, pages = {18109 -- 18116}, year = {2018}, abstract = {Different signal amplification strategies to improve the detection sensitivity of immunoassays have been applied which utilize enzymatic reactions, nanomaterials, or liposomes. The latter are very attractive materials for signal amplification because liposomes can be loaded with a large amount of signaling molecules, leading to a high sensitivity. In addition, liposomes can be used as a cell-like "bioscaffold" to directly test recognition schemes aiming at cell-related processes. This study demonstrates an easy and fast approach to link the novel hydrophobic optical probe based on [1,3]dioxolo[4,5-f]-[1,3]benzodioxole (DBD dye mm239) with tunable optical properties to hydrophilic recognition elements (e.g., antibodies) using liposomes for signal amplification and as carrier of the hydrophobic dye. The fluorescence properties of mm239 (e.g., long fluorescence lifetime, large Stokes shift, high photostability, and high quantum yield), its high hydrophobicity for efficient anchoring in liposomes, and a maleimide bioreactive group were applied in a unique combination to build a concept for the coupling of antibodies or other protein markers to liposomes (coupling to membranes can be envisaged). The concept further allowed us to avoid multiple dye labeling of the antibody. Here, anti-TAMRA-antibody (DC7-Ab) was attached to the liposomes. In proof-of-concept, steady-state as well as time-resolved fluorescence measurements (e.g., fluorescence depolarization) in combination with single molecule detection (fluorescence correlation spectroscopy, FCS) were used to analyze the binding interaction between DC7-Ab and liposomes as well as the binding of the antigen rhodamine 6G (R6G) to the antibody. Here, the Forster resonance energy transfer (FRET) between mm239 and R6G was monitored. In addition to ensemble FRET data, single-molecule FRET (PIE-FRET) experiments using pulsed interleaved excitation were used to characterize in detail the binding on a single-molecule level to avoid averaging out effects.}, language = {en} } @article{InalKoelschSellrieetal.2013, author = {Inal, Sahika and K{\"o}lsch, Jonas D. and Sellrie, Frank and Schenk, J{\"o}rg A. and Wischerhoff, Erik and Laschewsky, Andr{\´e} and Neher, Dieter}, title = {A water soluble fluorescent polymer as a dual colour sensor for temperature and a specific protein}, series = {Journal of materials chemistry : B, Materials for biology and medicine}, volume = {1}, journal = {Journal of materials chemistry : B, Materials for biology and medicine}, number = {46}, publisher = {Royal Society of Chemistry}, address = {Cambridge}, issn = {2050-750X}, doi = {10.1039/c3tb21245a}, pages = {6373 -- 6381}, year = {2013}, abstract = {We present two thermoresponsive water soluble copolymers prepared via free radical statistical copolymerization of N-isopropylacrylamide (NIPAm) and of oligo(ethylene glycol) methacrylates (OEGMAs), respectively, with a solvatochromic 7-(diethylamino)-3-carboxy-coumarin (DEAC)-functionalized monomer. In aqueous solutions, the NIPAm-based copolymer exhibits characteristic changes in its fluorescence profile in response to a change in solution temperature as well as to the presence of a specific protein, namely an anti-DEAC antibody. This polymer emits only weakly at low temperatures, but exhibits a marked fluorescence enhancement accompanied by a change in its emission colour when heated above its cloud point. Such drastic changes in the fluorescence and absorbance spectra are observed also upon injection of the anti-DEAC antibody, attributed to the specific binding of the antibody to DEAC moieties. Importantly, protein binding occurs exclusively when the polymer is in the well hydrated state below the cloud point, enabling a temperature control on the molecular recognition event. On the other hand, heating of the polymer-antibody complexes releases a fraction of the bound antibody. In the presence of the DEAC-functionalized monomer in this mixture, the released antibody competitively binds to the monomer and the antibody-free chains of the polymer undergo a more effective collapse and inter-aggregation. In contrast, the emission properties of the OEGMA-based analogous copolymer are rather insensitive to the thermally induced phase transition or to antibody binding. These opposite behaviours underline the need for a carefully tailored molecular design of responsive polymers aimed at specific applications, such as biosensing.}, language = {en} } @misc{InalKoelschSellrieetal.2013, author = {Inal, Sahika and K{\"o}lsch, Jonas D. and Sellrie, Frank and Schenk, J{\"o}rg A. and Wischerhoff, Erik and Laschewsky, Andr{\´e} and Neher, Dieter}, title = {A water soluble fluorescent polymer as a dual colour sensor for temperature and a specific protein}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-95336}, pages = {6373 -- 6381}, year = {2013}, abstract = {We present two thermoresponsive water soluble copolymers prepared via free radical statistical copolymerization of N-isopropylacrylamide (NIPAm) and of oligo(ethylene glycol) methacrylates (OEGMAs), respectively, with a solvatochromic 7-(diethylamino)-3-carboxy-coumarin (DEAC)- functionalized monomer. In aqueous solutions, the NIPAm-based copolymer exhibits characteristic changes in its fluorescence profile in response to a change in solution temperature as well as to the presence of a specific protein, namely an anti-DEAC antibody. This polymer emits only weakly at low temperatures, but exhibits a marked fluorescence enhancement accompanied by a change in its emission colour when heated above its cloud point. Such drastic changes in the fluorescence and absorbance spectra are observed also upon injection of the anti-DEAC antibody, attributed to the specific binding of the antibody to DEAC moieties. Importantly, protein binding occurs exclusively when the polymer is in the well hydrated state below the cloud point, enabling a temperature control on the molecular recognition event. On the other hand, heating of the polymer-antibody complexes releases a fraction of the bound antibody. In the presence of the DEAC-functionalized monomer in this mixture, the released antibody competitively binds to the monomer and the antibody-free chains of the polymer undergo a more effective collapse and inter-aggregation. In contrast, the emission properties of the OEGMA-based analogous copolymer are rather insensitive to the thermally induced phase transition or to antibody binding. These opposite behaviours underline the need for a carefully tailored molecular design of responsive polymers aimed at specific applications, such as biosensing.}, language = {en} } @article{InalKoelschSelrieetal.2013, author = {Inal, Sahika and K{\"o}lsch, Jonas D. and Selrie, Frank and Schenk, J{\"o}rg A. and Wischerhoff, Erik and Laschewsky, Andr{\´e} and Neher, Dieter}, title = {A water soluble fluorescent polymer as a dual colour sensor for temperature and a specific protein}, doi = {10.1039/c3tb21245a}, year = {2013}, abstract = {We present two thermoresponsive water soluble copolymers prepared via free radical statistical copolymerization of N-isopropylacrylamide (NIPAm) and of oligo(ethylene glycol) methacrylates (OEGMAs), respectively, with a solvatochromic 7-(diethylamino)-3-carboxy-coumarin (DEAC)-functionalized monomer. In aqueous solutions, the NIPAm-based copolymer exhibits characteristic changes in its fluorescence profile in response to a change in solution temperature as well as to the presence of a specific protein, namely an anti-DEAC antibody. This polymer emits only weakly at low temperatures, but exhibits a marked fluorescence enhancement accompanied by a change in its emission colour when heated above its cloud point. Such drastic changes in the fluorescence and absorbance spectra are observed also upon injection of the anti-DEAC antibody, attributed to the specific binding of the antibody to DEAC moieties. Importantly, protein binding occurs exclusively when the polymer is in the well hydrated state below the cloud point, enabling a temperature control on the molecular recognition event. On the other hand, heating of the polymer-antibody complexes releases a fraction of the bound antibody. In the presence of the DEAC-functionalized monomer in this mixture, the released antibody competitively binds to the monomer and the antibody-free chains of the polymer undergo a more effective collapse and inter-aggregation. In contrast, the emission properties of the OEGMA-based analogous copolymer are rather insensitive to the thermally induced phase transition or to antibody binding. These opposite behaviours underline the need for a carefully tailored molecular design of responsive polymers aimed at specific applications, such as biosensing.}, language = {en} } @article{KuhneDippongFlemigetal.2014, author = {Kuhne, Maren and Dippong, Martin and Flemig, Sabine and Hoffmann, Katrin and Petsch, Kristin and Schenk, J{\"o}rg A. and Kunte, Hans-J{\"o}rg and Schneider, Rudolf J.}, title = {Comparative characterization of mAb producing hapten-specific hybridoma cells by flow cytometric analysis and ELISA}, series = {Journal of immunological methods}, volume = {413}, journal = {Journal of immunological methods}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0022-1759}, doi = {10.1016/j.jim.2014.07.004}, pages = {45 -- 56}, year = {2014}, abstract = {A novel method that optimizes the screening for antibody-secreting hapten-specific hybridoma cells by using flow cytometry is described. Cell clones specific for five different haptens were analyzed. We selectively double stained and analyzed fixed hybridoma cells with fluorophore-labeled haptens to demonstrate the target-selectivity, and with a fluorophore-labeled anti-mouse IgG antibody to characterize the level of surface expression of membrane-bound IgGs. ELISA measurements with the supernatants of the individual hybridoma clones revealed that antibodies from those cells, which showed the highest fluorescence intensities in the flow cytometric analysis, also displayed the highest affinities for the target antigens. The fluorescence intensity of antibody-producing cells corresponded well with the produced antibodies' affinities toward their respective antigens. Immunohistochemical staining verified the successful double labeling of the cells. Our method makes it possible to perform a high-throughput screening for hybridoma cells, which have both an adequate IgG production rate and a high target affinity. (C) 2014 Elsevier B.V. All rights reserved.}, language = {en} } @article{LawatscheckAleksaiteSchenketal.2007, author = {Lawatscheck, Robert and Aleksaite, Egle and Schenk, J{\"o}rg A. and Micheel, Burkhard and Jandrig, Burkhard and Holland, Gudrun and Sasnauskas, Kestutius and Gedvilaite, Alma and Ulrich, Rainer G{\"u}nter}, title = {Chimeric polyomavirus-derived virus-like particles : the immunogenicity of an inserted peptide applied without adjuvant to mice depends on its insertion site and its flanking linker sequence}, issn = {0882-8245}, doi = {10.1089/vim.2007.0023}, year = {2007}, abstract = {We inserted the sequence of the carcinoembryonic antigen-derived T cell epitope CAP-1-6D (CEA) into different positions of the hamster polyomavirus major capsid protein VP1. Independently from additional flanking linkers, yeast- expressed VP1 proteins harboring the CEA insertion between VP1 amino acid residues 80 and 89 (site 1) or 288 and 295 (site 4) or simultaneously at both positions assembled to chimeric virus-like particles (VLPs). BALB/c mice immunized with adjuvant-free VLPs developed VP1- and epitope-specific antibodies. The level of the CEA-specific antibody response was determined by the insertion site, the number of inserts, and the flanking linker. The strongest CEA-specific antibody response was observed in mice immunized with VP1 proteins harboring the CEA insert at site 1. Moreover, the CEA- specific antibodies in these mice were still detectable 6 mo after the final booster immunization. Our results indicate that hamster polyomavirus-derived VLPs represent a highly immunogenic carrier for foreign insertions that might be useful for clinical and therapeutic applications.}, language = {en} } @article{LuebbeSchenkNaundorfetal.1999, author = {L{\"u}bbe, L. and Schenk, J{\"o}rg A. and Naundorf, H. and Karsten, U. and Wunderlich, V.}, title = {Reverse transformation of human mammary carcinoma cells}, year = {1999}, language = {en} } @article{PecherHarnackGuntheretal.2001, author = {Pecher, Gabriele and Harnack, U. and Gunther, M. and Hummel, M. and Fichtner, I. and Schenk, J{\"o}rg A.}, title = {Generation of an immortalized human CD4+ T cell clone inhibiting tumor growth in mice.}, year = {2001}, abstract = {Tumor antigen-specific T cell clones represent a useful tool in tumor immunology; however, their long-term culture is limited. To generate an immortalized cytotoxic T cell clone against the human tumor antigen mucin, we exposed a previously generated T cell culture to Herpesvirus saimiri. We obtained an immortalized human CD4+ T cell clone, termed SITAM. Clonality of these cells was shown by analysis of the alpha/beta-T cell receptor (TCR) repertoire. Cytolytic activity was demonstrated against several mucin-expressing tumor cell lines and could not be detected against non-mucin-expressing cells. SITAM cells maintained their features stably for 2 years. Furthermore, growth of the tumor cell line Capan-2 in NOD/SCID mice was inhibited when SITAM cells were coinjected subcutaneously with tumor cells. SITAM cells provide an unlimited source of clonal T cells for analysis of tumor recognition and may be of help in TCR-targeted immunotherapy.}, language = {en} } @article{PecherSchirrmannKaiseretal.2001, author = {Pecher, Gabriele and Schirrmann, Thomas and Kaiser, Lothar and Schenk, J{\"o}rg A.}, title = {Efficient cryopreservation of dendritic cells transfected with cDNA of a tumour antigen for clinical application}, year = {2001}, abstract = {Dendritic cells (DCs) are the most potent antigen-presenting cells of the immune system and are currently being investigated in clinical applications as cancer vaccines. An efficient cryopreservation method would greatly contribute to their use in clinical trials. We have established a method for freezing of DCs derived from peripheral blood mononuclear cells using the plasma expander Gelifundol. This enabled us to reduce the concentration of the toxic DMSO to 5\%. The method could be performed without the addition of fetal calf serum or any other serum. After freezing, the viability of the DCs was 90\%. The cells exhibited all the phenotypic characteristics (CD11c+, HLA-DR+, CD80+, CD83+, CD86+) of DCs, as tested by flow cytometry. Cells transfected with cDNA for the tumour antigen mucin expressed this protein on their surfaces in the same manner as before freezing. The stimulating capacity of a mixed lymphocyte culture was also preserved. These findings offer an efficient method for the cryopreservation of DCs for use in clinical trials.}, language = {en} } @article{PecherSpahnSchirrmannetal.2001, author = {Pecher, Gabriele and Spahn, Gunter and Schirrmann, Thomas and Kulbe, Hagen and Ziegner, Maja and Schenk, J{\"o}rg A. and Sandig, Volker}, title = {Mucin gene (MUC1) transfer into human dendritic cells by cationic liposomes and recombinant adenovirus}, issn = {0250-7005}, year = {2001}, abstract = {BACKGROUND: Dendritic cells (DC) as antigen presenting cells play an important role in immunotherapy of cancer. Mucin, encoded by the gene MUC1, is a human tumor antigen expressed in breast, pancreatic and ovarian cancers. Therefore, MUC1-transfected DC would be an attractive tool in constructing cancer vaccines. MATERIALS AND METHODS: Using two different cationic liposome preparations and, for comparison, a recombinant adenovirus expressing mucin, we tested the efficiency of mucin gene transfer into DC by flow cytometry. We investigated if these transfected DC were able to specifically stimulate autologous peripheral blood lymphocytes (PBL) from healthy donors. RESULTS: Flow cytometry revealed that 5-20\% of DC transfected with liposomes Lipofectin and 20-40\% of DC transduced with adenovirus expressed the relevant mucin epitopes. The expression of mucin on DC was similar to the expression of mucin found on carcinoma cells. After antigen uptake, DC specifically stimulated autologous PBL. CONCLUSION: We have shown that cationic liposomal gene transfer into human DC was feasible. We could obtain antigen specific stimulation of PBL at a similar rate as with adenoviral MUC1-transduced DC.}, language = {en} } @article{RohdeSchenkHeymannetal.1998, author = {Rohde, M. and Schenk, J{\"o}rg A. and Heymann, Stephan and Behrsing, Olaf and Scharte, Gudrun and Kempter, Gerhard and Woller, Jochen and H{\"o}hne, Wolfgang and Warsinke, Axel and Micheel, Burkhard}, title = {Production and characterization of monoclonal antibodeis against urea derivatives}, year = {1998}, language = {en} } @article{Schenk2002, author = {Schenk, J{\"o}rg A.}, title = {Two Hybrid cDNA Cloning}, year = {2002}, language = {en} }