@misc{TofeldeBufeTurowski2022, author = {Tofelde, Stefanie and Bufe, Aaron and Turowski, Jens M.}, title = {Hillslope Sediment Supply Limits Alluvial Valley Width}, series = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {1289}, issn = {1866-8372}, doi = {10.25932/publishup-57287}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-572879}, pages = {20}, year = {2022}, abstract = {River-valley morphology preserves information on tectonic and climatic conditions that shape landscapes. Observations suggest that river discharge and valley-wall lithology are the main controls on valley width. Yet, current models based on these observations fail to explain the full range of cross-sectional valley shapes in nature, suggesting hitherto unquantified controls on valley width. In particular, current models cannot explain the existence of paired terrace sequences that form under cyclic climate forcing. Paired river terraces are staircases of abandoned floodplains on both valley sides, and hence preserve past valley widths. Their formation requires alternating phases of predominantly river incision and predominantly lateral planation, plus progressive valley narrowing. While cyclic Quaternary climate changes can explain shifts between incision and lateral erosion, the driving mechanism of valley narrowing is unknown. Here, we extract valley geometries from climatically formed, alluvial river-terrace sequences and show that across our dataset, the total cumulative terrace height (here: total valley height) explains 90\%-99\% of the variance in valley width at the terrace sites. This finding suggests that valley height, or a parameter that scales linearly with valley height, controls valley width in addition to river discharge and lithology. To explain this valley-width-height relationship, we reformulate existing valley-width models and suggest that, when adjusting to new boundary conditions, alluvial valleys evolve to a width at which sediment removal from valley walls matches lateral sediment supply from hillslope erosion. Such a hillslope-channel coupling is not captured in current valley-evolution models. Our model can explain the existence of paired terrace sequences under cyclic climate forcing and relates valley width to measurable field parameters. Therefore, it facilitates the reconstruction of past climatic and tectonic conditions from valley topography.}, language = {en} } @article{TofeldeBufeTurowski2022, author = {Tofelde, Stefanie and Bufe, Aaron and Turowski, Jens M.}, title = {Hillslope Sediment Supply Limits Alluvial Valley Width}, series = {AGU Advances}, journal = {AGU Advances}, publisher = {American Geophysical Union (AGU); Wiley}, address = {Hoboken, New Jersey, USA}, issn = {2576-604X}, doi = {10.1029/2021AV000641}, pages = {20}, year = {2022}, abstract = {River-valley morphology preserves information on tectonic and climatic conditions that shape landscapes. Observations suggest that river discharge and valley-wall lithology are the main controls on valley width. Yet, current models based on these observations fail to explain the full range of cross-sectional valley shapes in nature, suggesting hitherto unquantified controls on valley width. In particular, current models cannot explain the existence of paired terrace sequences that form under cyclic climate forcing. Paired river terraces are staircases of abandoned floodplains on both valley sides, and hence preserve past valley widths. Their formation requires alternating phases of predominantly river incision and predominantly lateral planation, plus progressive valley narrowing. While cyclic Quaternary climate changes can explain shifts between incision and lateral erosion, the driving mechanism of valley narrowing is unknown. Here, we extract valley geometries from climatically formed, alluvial river-terrace sequences and show that across our dataset, the total cumulative terrace height (here: total valley height) explains 90\%-99\% of the variance in valley width at the terrace sites. This finding suggests that valley height, or a parameter that scales linearly with valley height, controls valley width in addition to river discharge and lithology. To explain this valley-width-height relationship, we reformulate existing valley-width models and suggest that, when adjusting to new boundary conditions, alluvial valleys evolve to a width at which sediment removal from valley walls matches lateral sediment supply from hillslope erosion. Such a hillslope-channel coupling is not captured in current valley-evolution models. Our model can explain the existence of paired terrace sequences under cyclic climate forcing and relates valley width to measurable field parameters. Therefore, it facilitates the reconstruction of past climatic and tectonic conditions from valley topography.}, language = {en} } @misc{ArboledaZapataAngelopoulosOverduinetal.2022, author = {Arboleda-Zapata, Mauricio and Angelopoulos, Michael and Overduin, Pier Paul and Grosse, Guido and Jones, Benjamin M. and Tronicke, Jens}, title = {Exploring the capabilities of electrical resistivity tomography to study subsea permafrost}, series = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {1285}, issn = {1866-8372}, doi = {10.25932/publishup-57123}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-571234}, pages = {4423 -- 4445}, year = {2022}, abstract = {Sea level rise and coastal erosion have inundated large areas of Arctic permafrost. Submergence by warm and saline waters increases the rate of inundated permafrost thaw compared to sub-aerial thawing on land. Studying the contact between the unfrozen and frozen sediments below the seabed, also known as the ice-bearing permafrost table (IBPT), provides valuable information to understand the evolution of sub-aquatic permafrost, which is key to improving and understanding coastal erosion prediction models and potential greenhouse gas emissions. In this study, we use data from 2D electrical resistivity tomography (ERT) collected in the nearshore coastal zone of two Arctic regions that differ in their environmental conditions (e.g., seawater depth and resistivity) to image and study the subsea permafrost. The inversion of 2D ERT data sets is commonly performed using deterministic approaches that favor smoothed solutions, which are typically interpreted using a user-specified resistivity threshold to identify the IBPT position. In contrast, to target the IBPT position directly during inversion, we use a layer-based model parameterization and a global optimization approach to invert our ERT data. This approach results in ensembles of layered 2D model solutions, which we use to identify the IBPT and estimate the resistivity of the unfrozen and frozen sediments, including estimates of uncertainties. Additionally, we globally invert 1D synthetic resistivity data and perform sensitivity analyses to study, in a simpler way, the correlations and influences of our model parameters. The set of methods provided in this study may help to further exploit ERT data collected in such permafrost environments as well as for the design of future field experiments.}, language = {en} } @article{ArboledaZapataAngelopoulosOverduinetal.2022, author = {Arboleda-Zapata, Mauricio and Angelopoulos, Michael and Overduin, Pier Paul and Grosse, Guido and Jones, Benjamin M. and Tronicke, Jens}, title = {Exploring the capabilities of electrical resistivity tomography to study subsea permafrost}, series = {The Cryosphere}, volume = {16}, journal = {The Cryosphere}, publisher = {Copernicus}, address = {Katlenburg-Lindau}, issn = {1994-0424}, doi = {10.5194/tc-16-4423-2022}, pages = {4423 -- 4445}, year = {2022}, abstract = {Sea level rise and coastal erosion have inundated large areas of Arctic permafrost. Submergence by warm and saline waters increases the rate of inundated permafrost thaw compared to sub-aerial thawing on land. Studying the contact between the unfrozen and frozen sediments below the seabed, also known as the ice-bearing permafrost table (IBPT), provides valuable information to understand the evolution of sub-aquatic permafrost, which is key to improving and understanding coastal erosion prediction models and potential greenhouse gas emissions. In this study, we use data from 2D electrical resistivity tomography (ERT) collected in the nearshore coastal zone of two Arctic regions that differ in their environmental conditions (e.g., seawater depth and resistivity) to image and study the subsea permafrost. The inversion of 2D ERT data sets is commonly performed using deterministic approaches that favor smoothed solutions, which are typically interpreted using a user-specified resistivity threshold to identify the IBPT position. In contrast, to target the IBPT position directly during inversion, we use a layer-based model parameterization and a global optimization approach to invert our ERT data. This approach results in ensembles of layered 2D model solutions, which we use to identify the IBPT and estimate the resistivity of the unfrozen and frozen sediments, including estimates of uncertainties. Additionally, we globally invert 1D synthetic resistivity data and perform sensitivity analyses to study, in a simpler way, the correlations and influences of our model parameters. The set of methods provided in this study may help to further exploit ERT data collected in such permafrost environments as well as for the design of future field experiments.}, language = {en} } @misc{AtmaniBookhagenSmith2022, author = {Atmani, Farid and Bookhagen, Bodo and Smith, Taylor}, title = {Measuring Vegetation Heights and Their Seasonal Changes in the Western Namibian Savanna Using Spaceborne Lidars}, series = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {1275}, issn = {1866-8372}, doi = {10.25932/publishup-56991}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-569915}, pages = {20}, year = {2022}, abstract = {The Ice, Cloud, and Land Elevation Satellite-2 (ICESat-2) with its land and vegetation height data product (ATL08), and Global Ecosystem Dynamics Investigation (GEDI) with its terrain elevation and height metrics data product (GEDI Level 2A) missions have great potential to globally map ground and canopy heights. Canopy height is a key factor in estimating above-ground biomass and its seasonal changes; these satellite missions can also improve estimated above-ground carbon stocks. This study presents a novel Sparse Vegetation Detection Algorithm (SVDA) which uses ICESat-2 (ATL03, geolocated photons) data to map tree and vegetation heights in a sparsely vegetated savanna ecosystem. The SVDA consists of three main steps: First, noise photons are filtered using the signal confidence flag from ATL03 data and local point statistics. Second, we classify ground photons based on photon height percentiles. Third, tree and grass photons are classified based on the number of neighbors. We validated tree heights with field measurements (n = 55), finding a root-mean-square error (RMSE) of 1.82 m using SVDA, GEDI Level 2A (Geolocated Elevation and Height Metrics product): 1.33 m, and ATL08: 5.59 m. Our results indicate that the SVDA is effective in identifying canopy photons in savanna ecosystems, where ATL08 performs poorly. We further identify seasonal vegetation height changes with an emphasis on vegetation below 3 m; widespread height changes in this class from two wet-dry cycles show maximum seasonal changes of 1 m, possibly related to seasonal grass-height differences. Our study shows the difficulties of vegetation measurements in savanna ecosystems but provides the first estimates of seasonal biomass changes.}, language = {en} } @article{AtmaniBookhagenSmith2022, author = {Atmani, Farid and Bookhagen, Bodo and Smith, Taylor}, title = {Measuring vegetation heights and their seasonal changes in the Western Namibian Savanna using spaceborne lidars}, series = {Remote sensing / Molecular Diversity Preservation International (MDPI)}, volume = {14}, journal = {Remote sensing / Molecular Diversity Preservation International (MDPI)}, number = {12}, edition = {12}, publisher = {MDPI}, address = {Basel, Schweiz}, issn = {2072-4292}, doi = {10.3390/rs14122928}, pages = {1 -- 20}, year = {2022}, abstract = {The Ice, Cloud, and Land Elevation Satellite-2 (ICESat-2) with its land and vegetation height data product (ATL08), and Global Ecosystem Dynamics Investigation (GEDI) with its terrain elevation and height metrics data product (GEDI Level 2A) missions have great potential to globally map ground and canopy heights. Canopy height is a key factor in estimating above-ground biomass and its seasonal changes; these satellite missions can also improve estimated above-ground carbon stocks. This study presents a novel Sparse Vegetation Detection Algorithm (SVDA) which uses ICESat-2 (ATL03, geolocated photons) data to map tree and vegetation heights in a sparsely vegetated savanna ecosystem. The SVDA consists of three main steps: First, noise photons are filtered using the signal confidence flag from ATL03 data and local point statistics. Second, we classify ground photons based on photon height percentiles. Third, tree and grass photons are classified based on the number of neighbors. We validated tree heights with field measurements (n = 55), finding a root-mean-square error (RMSE) of 1.82 m using SVDA, GEDI Level 2A (Geolocated Elevation and Height Metrics product): 1.33 m, and ATL08: 5.59 m. Our results indicate that the SVDA is effective in identifying canopy photons in savanna ecosystems, where ATL08 performs poorly. We further identify seasonal vegetation height changes with an emphasis on vegetation below 3 m; widespread height changes in this class from two wet-dry cycles show maximum seasonal changes of 1 m, possibly related to seasonal grass-height differences. Our study shows the difficulties of vegetation measurements in savanna ecosystems but provides the first estimates of seasonal biomass changes.}, language = {en} } @phdthesis{Esfahani2022, author = {Esfahani, Reza Dokht Dolatabadi}, title = {Time-dependent monitoring of near-surface and ground motion modelling: developing new data processing approaches based on Music Information Retrieval (MIR) strategies}, doi = {10.25932/publishup-56767}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-567671}, school = {Universit{\"a}t Potsdam}, pages = {xiv, 107}, year = {2022}, abstract = {Seismology, like many scientific fields, e.g., music information retrieval and speech signal pro- cessing, is experiencing exponential growth in the amount of data acquired by modern seismo- logical networks. In this thesis, I take advantage of the opportunities offered by "big data" and by the methods developed in the areas of music information retrieval and machine learning to predict better the ground motion generated by earthquakes and to study the properties of the surface layers of the Earth. In order to better predict seismic ground motions, I propose two approaches based on unsupervised deep learning methods, an autoencoder network and Generative Adversarial Networks. The autoencoder technique explores a massive amount of ground motion data, evaluates the required parameters, and generates synthetic ground motion data in the Fourier amplitude spectra (FAS) domain. This method is tested on two synthetic datasets and one real dataset. The application on the real dataset shows that the substantial information contained within the FAS data can be encoded to a four to the five-dimensional manifold. Consequently, only a few independent parameters are required for efficient ground motion prediction. I also propose a method based on Conditional Generative Adversarial Networks (CGAN) for simulating ground motion records in the time-frequency and time domains. CGAN generates the time-frequency domains based on the parameters: magnitude, distance, and shear wave velocities to 30 m depth (VS30). After generating the amplitude of the time-frequency domains using the CGAN model, instead of classical conventional methods that assume the amplitude spectra with a random phase spectrum, the phase of the time-frequency domains is recovered by minimizing the observed and reconstructed spectrograms. In the second part of this dissertation, I propose two methods for the monitoring and characterization of near-surface materials and site effect analyses. I implement an autocorrelation function and an interferometry method to monitor the velocity changes of near-surface materials resulting from the Kumamoto earthquake sequence (Japan, 2016). The observed seismic velocity changes during the strong shaking are due to the non-linear response of the near-surface materials. The results show that the velocity changes lasted for about two months after the Kumamoto mainshock. Furthermore, I used the velocity changes to evaluate the in-situ strain-stress relationship. I also propose a method for assessing the site proxy "VS30" using non-invasive analysis. In the proposed method, a dispersion curve of surface waves is inverted to estimate the shear wave velocity of the subsurface. This method is based on the Dix-like linear operators, which relate the shear wave velocity to the phase velocity. The proposed method is fast, efficient, and stable. All of the methods presented in this work can be used for processing "big data" in seismology and for the analysis of weak and strong ground motion data, to predict ground shaking, and to analyze site responses by considering potential time dependencies and nonlinearities.}, language = {en} } @phdthesis{Schuster2022, author = {Schuster, Valerian}, title = {Mechanical and hydraulic properties of Opalinus Clay}, doi = {10.25932/publishup-56678}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-566786}, school = {Universit{\"a}t Potsdam}, year = {2022}, abstract = {Deep geological repositories represent a promising solution for the final disposal of nuclear waste. Due to its low permeability, high sorption capacity and self-sealing potential, Opalinus Clay (OPA) is considered a suitable host rock formation for the long-term storage of nuclear waste in Switzerland and Germany. However, the clay formation is characterized by compositional and structural variabilities including the occurrence of carbonate- and quartz-rich layers, pronounced bedding planes as well as tectonic elements such as pre-existing fault zones and fractures, suggesting heterogeneous rock mass properties. Characterizing the heterogeneity of host rock properties is therefore essential for safety predictions of future repositories. This includes a detailed understanding of the mechanical and hydraulic properties, deformation behavior and the underlying deformation processes for an improved assessment of the sealing integrity and long-term safety of a deep repository in OPA. Against this background, this thesis presents the results of deformation experiments performed on intact and artificially fractured specimens of the quartz-rich, sandy and clay-rich, shaly facies of OPA. The experiments focus on the influence of mineralogical composition on the deformation behavior as well as the reactivation and sealing properties of pre-existing faults and fractures at different boundary conditions (e.g., pressure, temperature, strain rate). The anisotropic mechanical properties of the sandy facies of OPA are presented in the first section, which were determined from triaxial deformation experiments using dried and resaturated samples loaded at 0°, 45° and 90° to the bedding plane orientation. A Paterson-type deformation apparatus was used that allowed to investigate how the deformation behavior is influenced by the variation of confining pressure (50 - 100 MPa), temperature (25 - 200 °C), and strain rate (1 × 10-3 - 5 × 10-6 s-1). Constant strain rate experiments revealed brittle to semi-brittle deformation behavior of the sandy facies at the applied conditions. Deformation behavior showed a strong dependence on confining pressure, degree of water saturation as well as bedding orientation, whereas the variation of temperature and strain rate had no significant effect on deformation. Furthermore, the sandy facies displays higher strength and stiffness compared to the clay-rich shaly facies deformed at similar conditions by N{\"u}esch (1991). From the obtained results it can be concluded that cataclastic mechanisms dominate the short-term deformation behavior of dried samples from both facies up to elevated pressure (<200 MPa) and temperature (<200 °C) conditions. The second part presents triaxial deformation tests that were performed to investigate how structural discontinuities affect the deformation behavior of OPA and how the reactivation of preexisting faults is influenced by mineral composition and confining pressure. To this end, dried cylindrical samples of the sandy and shaly facies of OPA were used, which contained a saw-cut fracture oriented at 30° to the long axis. After hydrostatic pre-compaction at 50 MPa, constant strain rate deformation tests were performed at confining pressures of 5, 20 or 35 MPa. With increasing confinement, a gradual transition from brittle, highly localized fault slip including a stress drop at fault reactivation to semi-brittle deformation behavior, characterized by increasing delocalization and non-linear strain hardening without dynamic fault reactivation, can be observed. Brittle localization was limited by the confining pressure at which the fault strength exceeded the matrix yield strength, above which strain partitioning between localized fault slip and distributed matrix deformation occurred. The sandy facies displayed a slightly higher friction coefficient (≈0.48) compared to the shaly facies (≈0.4). In addition, slide-hold-slide tests were conducted, revealing negative or negligible frictional strengthening, which suggests stable creep and long-term weakness of faults in both facies of OPA. The conducted experiments demonstrate that dilatant brittle fault reactivation in OPA may be favored at high overconsolidation ratios and shallow depths, increasing the risk of seismic hazard and the creation of fluid pathways. The final section illustrates how the sealing capacity of fractures in OPA is affected by mineral composition. Triaxial flow-through experiments using Argon-gas were performed with dried samples from the sandy and shaly facies of OPA containing a roughened, artificial fracture. Slate, graywacke, quartzite, natural fault gouge, and granite samples were also tested to highlight the influence of normal stress, mineralogy and diagenesis on the sustainability of fracture transmissivity. With increasing normal stress, a non-linear decrease of fracture transmissivity can be observed that resulted in a permanent reduction of transmissivity after stress release. The transmissivity of rocks with a high portion of strong minerals (e.g., quartz) and high unconfined compressive strength was less sensitive to stress changes. In accordance with this, the sandy facies of OPA displayed a higher initial transmissivity that was less sensitive to stress changes compared to the shaly facies. However, transmissivity of rigid slate was less sensitive to stress changes than the sandy facies of OPA, although the slate is characterized by a higher phyllosilicate content. This demonstrates that in addition to mineral composition, other factors such as the degree of metamorphism, cementation and consolidation have to be considered when evaluating the sealing capacity of phyllosilicate-rich rocks. The results of this thesis highlighted the role of confining pressure on the failure behavior of intact and artificially fractured OPA. Although the quartz-rich sandy facies may be considered as being more favorable for underground constructions due to its higher shear strength and stiffness than the shaly facies, the results indicate that when fractures develop in the sandy facies, they are more conductive and remain more permeable compared to fractures in the clay-dominated shaly facies at a given stress. The results may provide the basis for constitutive models to predict the integrity and evolution of a future repository. Clearly, the influence of composition and consolidation, e.g., by geological burial and uplift, on the mechanical sealing behavior of OPA highlights the need for a detailed site-specific material characterization for a future repository.}, language = {en} } @misc{HeistermannBogenaFranckeetal.2022, author = {Heistermann, Maik and Bogena, Heye and Francke, Till and G{\"u}ntner, Andreas and Jakobi, Jannis and Rasche, Daniel and Schr{\"o}n, Martin and D{\"o}pper, Veronika and Fersch, Benjamin and Groh, Jannis and Patil, Amol and P{\"u}tz, Thomas and Reich, Marvin and Zacharias, Steffen and Zengerle, Carmen and Oswald, Sascha}, title = {Soil moisture observation in a forested headwater catchment: combining a dense cosmic-ray neutron sensor network with roving and hydrogravimetry at the TERENO site W{\"u}stebach}, series = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {1272}, issn = {1866-8372}, doi = {10.25932/publishup-56775}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-567756}, pages = {2501 -- 2519}, year = {2022}, abstract = {Cosmic-ray neutron sensing (CRNS) has become an effective method to measure soil moisture at a horizontal scale of hundreds of metres and a depth of decimetres. Recent studies proposed operating CRNS in a network with overlapping footprints in order to cover root-zone water dynamics at the small catchment scale and, at the same time, to represent spatial heterogeneity. In a joint field campaign from September to November 2020 (JFC-2020), five German research institutions deployed 15 CRNS sensors in the 0.4 km2 W{\"u}stebach catchment (Eifel mountains, Germany). The catchment is dominantly forested (but includes a substantial fraction of open vegetation) and features a topographically distinct catchment boundary. In addition to the dense CRNS coverage, the campaign featured a unique combination of additional instruments and techniques: hydro-gravimetry (to detect water storage dynamics also below the root zone); ground-based and, for the first time, airborne CRNS roving; an extensive wireless soil sensor network, supplemented by manual measurements; and six weighable lysimeters. Together with comprehensive data from the long-term local research infrastructure, the published data set (available at https://doi.org/10.23728/b2share.756ca0485800474e9dc7f5949c63b872; Heistermann et al., 2022) will be a valuable asset in various research contexts: to advance the retrieval of landscape water storage from CRNS, wireless soil sensor networks, or hydrogravimetry; to identify scale-specific combinations of sensors and methods to represent soil moisture variability; to improve the understanding and simulation of land-atmosphere exchange as well as hydrological and hydrogeological processes at the hillslope and the catchment scale; and to support the retrieval of soil water content from airborne and spaceborne remote sensing platforms.}, language = {en} } @book{Trauth2022, author = {Trauth, Martin H.}, title = {Python Recipes for Earth Sciences}, series = {Springer Textbooks in Earth Sciences, Geography and Environment}, journal = {Springer Textbooks in Earth Sciences, Geography and Environment}, publisher = {Springer}, address = {Cham}, isbn = {978-3-031-07719-7}, issn = {2510-1307}, doi = {10.1007/978-3-031-07719-7}, pages = {453}, year = {2022}, abstract = {Python is used in a wide range of geoscientific applications, such as in processing images for remote sensing, in generating and processing digital elevation models, and in analyzing time series. This book introduces methods of data analysis in the geosciences using Python that include basic statistics for univariate, bivariate, and multivariate data sets, time series analysis, and signal processing; the analysis of spatial and directional data; and image analysis. The text includes numerous examples that demonstrate how Python can be used on data sets from the earth sciences. The supplementary electronic material (available online through Springer Link) contains the example data as well as recipes that include all the Python commands featured in the book.}, language = {en} } @phdthesis{Jongejans2022, author = {Jongejans, Loeka Laura}, title = {Organic matter stored in ice-rich permafrost}, doi = {10.25932/publishup-56491}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-564911}, school = {Universit{\"a}t Potsdam}, pages = {xxiii, 178}, year = {2022}, abstract = {The Arctic is changing rapidly and permafrost is thawing. Especially ice-rich permafrost, such as the late Pleistocene Yedoma, is vulnerable to rapid and deep thaw processes such as surface subsidence after the melting of ground ice. Due to permafrost thaw, the permafrost carbon pool is becoming increasingly accessible to microbes, leading to increased greenhouse gas emissions, which enhances the climate warming. The assessment of the molecular structure and biodegradability of permafrost organic matter (OM) is highly needed. My research revolves around the question "how does permafrost thaw affect its OM storage?" More specifically, I assessed (1) how molecular biomarkers can be applied to characterize permafrost OM, (2) greenhouse gas production rates from thawing permafrost, and (3) the quality of OM of frozen and (previously) thawed sediments. I studied deep (max. 55 m) Yedoma and thawed Yedoma permafrost sediments from Yakutia (Sakha Republic). I analyzed sediment cores taken below thermokarst lakes on the Bykovsky Peninsula (southeast of the Lena Delta) and in the Yukechi Alas (Central Yakutia), and headwall samples from the permafrost cliff Sobo-Sise (Lena Delta) and the retrogressive thaw slump Batagay (Yana Uplands). I measured biomarker concentrations of all sediment samples. Furthermore, I carried out incubation experiments to quantify greenhouse gas production in thawing permafrost. I showed that the biomarker proxies are useful to assess the source of the OM and to distinguish between OM derived from terrestrial higher plants, aquatic plants and microbial activity. In addition, I showed that some proxies help to assess the degree of degradation of permafrost OM, especially when combined with sedimentological data in a multi-proxy approach. The OM of Yedoma is generally better preserved than that of thawed Yedoma sediments. The greenhouse gas production was highest in the permafrost sediments that thawed for the first time, meaning that the frozen Yedoma sediments contained most labile OM. Furthermore, I showed that the methanogenic communities had established in the recently thawed sediments, but not yet in the still-frozen sediments. My research provided the first molecular biomarker distributions and organic carbon turnover data as well as insights in the state and processes in deep frozen and thawed Yedoma sediments. These findings show the relevance of studying OM in deep permafrost sediments.}, language = {en} } @phdthesis{Spallanzani2022, author = {Spallanzani, Roberta}, title = {Li and B in ascending magmas: an experimental study on their mobility and isotopic fractionation}, doi = {10.25932/publishup-56061}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-560619}, school = {Universit{\"a}t Potsdam}, pages = {xiv, 131}, year = {2022}, abstract = {This research study focuses on the behaviour of Li and B during magmatic ascent, and decompression-driven degassing related to volcanic systems. The main objective of this dissertation is to determine whether it is possible to use the diffusion properties of the two trace elements as a tool to trace magmatic ascent rate. With this objective, diffusion-couple and decompression experiments have been performed in order to study Li and B mobility in intra-melt conditions first, and then in an evolving system during decompression-driven degassing. Synthetic glasses were prepared with rhyolitic composition and an initial water content of 4.2 wt\%, and all the experiments were performed using an internally heated pressure vessel, in order to ensure a precise control on the experimental parameters such as temperature and pressure. Diffusion-couple experiments were performed with a fix pressure 300 MPa. The temperature was varied in the range of 700-1250 °C with durations between 0 seconds and 24 hours. The diffusion-couple results show that Li diffusivity is very fast and starts already at very low temperature. Significant isotopic fractionation occurs due to the faster mobility of 6Li compared to 7Li. Boron diffusion is also accelerated by the presence of water, but the results of the isotopic ratios are unclear, and further investigation would be necessary to well constrain the isotopic fractionation process of boron in hydrous silicate melts. The isotopic ratios results show that boron isotopic fractionation might be affected by the speciation of boron in the silicate melt structure, as 10B and 11B tend to have tetrahedral and trigonal coordination, respectively. Several decompression experiments were performed at 900 °C and 1000 °C, with pressures going from 300 MPa to 71-77 MPa and durations of 30 minutes, two, five and ten hours, in order to trigger water exsolution and the formation of vesicles in the sample. Textural observations and the calculation of the bubble number density confirmed that the bubble size and distribution after decompression is directly proportional to the decompression rate. The overall SIMS results of Li and B show that the two trace elements tend to progressively decrease their concentration with decreasing decompression rates. This is explained because for longer decompression times, the diffusion of Li and B into the bubbles has more time to progress and the melt continuously loses volatiles as the bubbles expand their volumes. For fast decompression, Li and B results show a concentration increase with a δ7Li and δ11B decrease close to the bubble interface, related to the sudden formation of the gas bubble, and the occurrence of a diffusion process in the opposite direction, from the bubble meniscus to the unaltered melt. When the bubble growth becomes dominant and Li and B start to exsolve into the gas phase, the silicate melt close to the bubble gets depleted in Li and B, because of a stronger diffusion of the trace elements into the bubble. Our data are being applied to different models, aiming to combine the dynamics of bubble nucleation and growth with the evolution of trace elements concentration and isotopic ratios. Here, first considerations on these models will be presented, giving concluding remarks on this research study. All in all, the final remarks constitute a good starting point for further investigations. These results are a promising base to continue to study this process, and Li and B can indeed show clear dependences on decompression-related magma ascent rates in volcanic systems.}, language = {en} } @phdthesis{Tranter2022, author = {Tranter, Morgan Alan}, title = {Numerical quantification of barite reservoir scaling and the resulting injectivity loss in geothermal systems}, doi = {10.25932/publishup-56113}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-561139}, school = {Universit{\"a}t Potsdam}, pages = {131}, year = {2022}, abstract = {Due to the major role of greenhouse gas emissions in global climate change, the development of non-fossil energy technologies is essential. Deep geothermal energy represents such an alternative, which offers promising properties such as a high base load capability and a large untapped potential. The present work addresses barite precipitation within geothermal systems and the associated reduction in rock permeability, which is a major obstacle to maintaining high efficiency. In this context, hydro-geochemical models are essential to quantify and predict the effects of precipitation on the efficiency of a system. The objective of the present work is to quantify the induced injectivity loss using numerical and analytical reactive transport simulations. For the calculations, the fractured-porous reservoirs of the German geothermal regions North German Basin (NGB) and Upper Rhine Graben (URG) are considered. Similar depth-dependent precipitation potentials could be determined for both investigated regions (2.8-20.2 g/m3 fluid). However, the reservoir simulations indicate that the injectivity loss due to barite deposition in the NGB is significant (1.8\%-6.4\% per year) and the longevity of the system is affected as a result; this is especially true for deeper reservoirs (3000 m). In contrast, simulations of URG sites indicate a minor role of barite (< 0.1\%-1.2\% injectivity loss per year). The key differences between the investigated regions are reservoir thicknesses and the presence of fractures in the rock, as well as the ionic strength of the fluids. The URG generally has fractured-porous reservoirs with much higher thicknesses, resulting in a greater distribution of precipitates in the subsurface. Furthermore, ionic strengths are higher in the NGB, which accelerates barite precipitation, causing it to occur more concentrated around the wellbore. The more concentrated the precipitates occur around the wellbore, the higher the injectivity loss. In this work, a workflow was developed within which numerical and analytical models can be used to estimate and quantify the risk of barite precipitation within the reservoir of geothermal systems. A key element is a newly developed analytical scaling score that provides a reliable estimate of induced injectivity loss. The key advantage of the presented approach compared to fully coupled reservoir simulations is its simplicity, which makes it more accessible to plant operators and decision makers. Thus, in particular, the scaling score can find wide application within geothermal energy, e.g., in the search for potential plant sites and the estimation of long-term efficiency.}, language = {en} } @misc{KleinLantuitRolph2022, author = {Klein, Konstantin and Lantuit, Hugues and Rolph, Rebecca}, title = {Drivers of Turbidity and Its Seasonal Variability at Herschel Island Qikiqtaruk (Western Canadian Arctic)}, series = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, publisher = {Universit{\"a}tsverlag Potsdam}, address = {Potsdam}, issn = {1866-8372}, doi = {10.25932/publishup-56176}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-561765}, pages = {1 -- 13}, year = {2022}, abstract = {The Arctic is greatly affected by climate change. Increasing air temperatures drive permafrost thaw and an increase in coastal erosion and river discharge. This results in a greater input of sediment and organic matter into nearshore waters, impacting ecosystems by reducing light transmission through the water column and altering biogeochemistry. This potentially results in impacts on the subsistence economy of local people as well as the climate due to the transformation of suspended organic matter into greenhouse gases. Even though the impacts of increased suspended sediment concentrations and turbidity in the Arctic nearshore zone are well-studied, the mechanisms underpinning this increase are largely unknown. Wave energy and tides drive the level of turbidity in the temperate and tropical parts of the world, and this is generally assumed to also be the case in the Arctic. However, the tidal range is considerably lower in the Arctic, and processes related to the occurrence of permafrost have the potential to greatly contribute to nearshore turbidity. In this study, we use high-resolution satellite imagery alongside in situ and ERA5 reanalysis data of ocean and climate variables in order to identify the drivers of nearshore turbidity, along with its seasonality in the nearshore waters of Herschel Island Qikiqtaruk, in the western Canadian Arctic. Nearshore turbidity correlates well to wind direction, wind speed, significant wave height, and wave period. Nearshore turbidity is superiorly correlated to wind speed at the Beaufort Shelf compared to in situ measurements at Herschel Island Qikiqtaruk, showing that nearshore turbidity, albeit being of limited spatial extent, is influenced by large-scale weather and ocean phenomenons. We show that, in contrast to the temperate and tropical ocean, freshly eroded material is the predominant driver of nearshore turbidity in the Arctic, rather than resuspension, which is caused by the vulnerability of permafrost coasts to thermo-erosion.}, language = {en} } @article{KleinLantuitRolph2022, author = {Klein, Konstantin and Lantuit, Hugues and Rolph, Rebecca}, title = {Drivers of Turbidity and Its Seasonal Variability at Herschel Island Qikiqtaruk (Western Canadian Arctic)}, series = {Water / Molecular Diversity Preservation International (MDPI)}, volume = {14}, journal = {Water / Molecular Diversity Preservation International (MDPI)}, edition = {11}, publisher = {MDPI}, address = {Basel, Schweiz}, issn = {2073-4441}, doi = {10.3390/w14111751}, pages = {1 -- 13}, year = {2022}, abstract = {The Arctic is greatly affected by climate change. Increasing air temperatures drive permafrost thaw and an increase in coastal erosion and river discharge. This results in a greater input of sediment and organic matter into nearshore waters, impacting ecosystems by reducing light transmission through the water column and altering biogeochemistry. This potentially results in impacts on the subsistence economy of local people as well as the climate due to the transformation of suspended organic matter into greenhouse gases. Even though the impacts of increased suspended sediment concentrations and turbidity in the Arctic nearshore zone are well-studied, the mechanisms underpinning this increase are largely unknown. Wave energy and tides drive the level of turbidity in the temperate and tropical parts of the world, and this is generally assumed to also be the case in the Arctic. However, the tidal range is considerably lower in the Arctic, and processes related to the occurrence of permafrost have the potential to greatly contribute to nearshore turbidity. In this study, we use high-resolution satellite imagery alongside in situ and ERA5 reanalysis data of ocean and climate variables in order to identify the drivers of nearshore turbidity, along with its seasonality in the nearshore waters of Herschel Island Qikiqtaruk, in the western Canadian Arctic. Nearshore turbidity correlates well to wind direction, wind speed, significant wave height, and wave period. Nearshore turbidity is superiorly correlated to wind speed at the Beaufort Shelf compared to in situ measurements at Herschel Island Qikiqtaruk, showing that nearshore turbidity, albeit being of limited spatial extent, is influenced by large-scale weather and ocean phenomenons. We show that, in contrast to the temperate and tropical ocean, freshly eroded material is the predominant driver of nearshore turbidity in the Arctic, rather than resuspension, which is caused by the vulnerability of permafrost coasts to thermo-erosion.}, language = {en} } @misc{VehLuetzowKharlamovaetal.2022, author = {Veh, Georg and L{\"u}tzow, Natalie and Kharlamova, Varvara and Petrakov, Dmitry and Hugonnet, Romain and Korup, Oliver}, title = {Trends, Breaks, and Biases in the Frequency of Reported Glacier Lake Outburst Floods}, series = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, publisher = {Universit{\"a}tsverlag Potsdam}, address = {Potsdam}, issn = {1866-8372}, doi = {10.25932/publishup-56100}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-561005}, pages = {1 -- 14}, year = {2022}, abstract = {Thousands of glacier lakes have been forming behind natural dams in high mountains following glacier retreat since the early 20th century. Some of these lakes abruptly released pulses of water and sediment with disastrous downstream consequences. Yet it remains unclear whether the reported rise of these glacier lake outburst floods (GLOFs) has been fueled by a warming atmosphere and enhanced meltwater production, or simply a growing research effort. Here we estimate trends and biases in GLOF reporting based on the largest global catalog of 1,997 dated glacier-related floods in six major mountain ranges from 1901 to 2017. We find that the positive trend in the number of reported GLOFs has decayed distinctly after a break in the 1970s, coinciding with independently detected trend changes in annual air temperatures and in the annual number of field-based glacier surveys (a proxy of scientific reporting). We observe that GLOF reports and glacier surveys decelerated, while temperature rise accelerated in the past five decades. Enhanced warming alone can thus hardly explain the annual number of reported GLOFs, suggesting that temperature-driven glacier lake formation, growth, and failure are weakly coupled, or that outbursts have been overlooked. Indeed, our analysis emphasizes a distinct geographic and temporal bias in GLOF reporting, and we project that between two to four out of five GLOFs on average might have gone unnoticed in the early to mid-20th century. We recommend that such biases should be considered, or better corrected for, when attributing the frequency of reported GLOFs to atmospheric warming.}, language = {en} } @article{VehLuetzowKharlamovaetal.2022, author = {Veh, Georg and L{\"u}tzow, Natalie and Kharlamova, Varvara and Petrakov, Dmitry and Hugonnet, Romain and Korup, Oliver}, title = {Trends, Breaks, and Biases in the Frequency of Reported Glacier Lake Outburst Floods}, series = {Earth's Future}, volume = {10}, journal = {Earth's Future}, edition = {3}, publisher = {Wiley-Blackwell}, address = {Hoboken, New Jersey}, issn = {2328-4277}, doi = {10.1029/2021EF002426}, pages = {1 -- 14}, year = {2022}, abstract = {Thousands of glacier lakes have been forming behind natural dams in high mountains following glacier retreat since the early 20th century. Some of these lakes abruptly released pulses of water and sediment with disastrous downstream consequences. Yet it remains unclear whether the reported rise of these glacier lake outburst floods (GLOFs) has been fueled by a warming atmosphere and enhanced meltwater production, or simply a growing research effort. Here we estimate trends and biases in GLOF reporting based on the largest global catalog of 1,997 dated glacier-related floods in six major mountain ranges from 1901 to 2017. We find that the positive trend in the number of reported GLOFs has decayed distinctly after a break in the 1970s, coinciding with independently detected trend changes in annual air temperatures and in the annual number of field-based glacier surveys (a proxy of scientific reporting). We observe that GLOF reports and glacier surveys decelerated, while temperature rise accelerated in the past five decades. Enhanced warming alone can thus hardly explain the annual number of reported GLOFs, suggesting that temperature-driven glacier lake formation, growth, and failure are weakly coupled, or that outbursts have been overlooked. Indeed, our analysis emphasizes a distinct geographic and temporal bias in GLOF reporting, and we project that between two to four out of five GLOFs on average might have gone unnoticed in the early to mid-20th century. We recommend that such biases should be considered, or better corrected for, when attributing the frequency of reported GLOFs to atmospheric warming.}, language = {en} } @phdthesis{Schoenfeldt2022, author = {Sch{\"o}nfeldt, Elisabeth}, title = {Giant landslides in Patagonia, Argentina}, pages = {XXII, 156}, year = {2022}, language = {en} } @phdthesis{Mueller2022, author = {M{\"u}ller, Daniela}, title = {Abrupt climate changes and extreme events in two different varved lake sediment records}, doi = {10.25932/publishup-55833}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-558331}, school = {Universit{\"a}t Potsdam}, pages = {XVIII, 209}, year = {2022}, abstract = {Different lake systems might reflect different climate elements of climate changes, while the responses of lake systems are also divers, and are not completely understood so far. Therefore, a comparison of lakes in different climate zones, during the high-amplitude and abrupt climate fluctuations of the Last Glacial to Holocene transition provides an exceptional opportunity to investigate distinct natural lake system responses to different abrupt climate changes. The aim of this doctoral thesis was to reconstruct climatic and environmental fluctuations down to (sub-) annual resolution from two different lake systems during the Last Glacial-Interglacial transition (~17 and 11 ka). Lake Gościąż, situated in the temperate central Poland, developed in the Aller{\o}d after recession of the Last Glacial ice sheets. The Dead Sea is located in the Levant (eastern Mediterranean) within a steep gradient from sub-humid to hyper-arid climate, and formed in the mid-Miocene. Despite their differences in sedimentation processes, both lakes form annual laminations (varves), which are crucial for studies of abrupt climate fluctuations. This doctoral thesis was carried out within the DFG project PALEX-II (Paleohydrology and Extreme Floods from the Dead Sea ICDP Core) that investigates extreme hydro-meteorological events in the ICDP core in relation to climate changes, and ICLEA (Virtual Institute of Integrated Climate and Landscape Evolution Analyses) that intends to better the understanding of climate dynamics and landscape evolutions in north-central Europe since the Last Glacial. Further, it contributes to the Helmholtz Climate Initiative REKLIM (Regional Climate Change and Humans) Research Theme 3 "Extreme events across temporal and spatial scales" that investigates extreme events using climate data, paleo-records and model-based simulations. The three main aims were to (1) establish robust chronologies of the lakes, (2) investigate how major and abrupt climate changes affect the lake systems, and (3) to compare the responses of the two varved lakes to these hemispheric-scale climate changes. Robust chronologies are a prerequisite for high-resolved climate and environmental reconstructions, as well as for archive comparisons. Thus, addressing the first aim, the novel chronology of Lake Gościąż was established by microscopic varve counting and Bayesian age-depth modelling in Bacon for a non-varved section, and was corroborated by independent age constrains from 137Cs activity concentration measurements, AMS radiocarbon dating and pollen analysis. The varve chronology reaches from the late Aller{\o}d until AD 2015, revealing more Holocene varves than a previous study of Lake Gościąż suggested. Varve formation throughout the complete Younger Dryas (YD) even allowed the identification of annually- to decadal-resolved leads and lags in proxy responses at the YD transitions. The lateglacial chronology of the Dead Sea (DS) was thus far mainly based on radiocarbon and U/Th-dating. In the unique ICDP core from the deep lake centre, continuous search for cryptotephra has been carried out in lateglacial sediments between two prominent gypsum deposits - the Upper and Additional Gypsum Units (UGU and AGU, respectively). Two cryptotephras were identified with glass analyses that correlate with tephra deposits from the S{\"u}phan and Nemrut volcanoes indicating that the AGU is ~1000 years younger than previously assumed, shifting it into the YD, and the underlying varved interval into the B{\o}lling/Aller{\o}d, contradicting previous assumptions. Using microfacies analyses, stable isotopes and temperature reconstructions, the second aim was achieved at Lake Gościąż. The YD lake system was dynamic, characterized by higher aquatic bioproductivity, more re-suspended material and less anoxia than during the Aller{\o}d and Early Holocene, mainly influenced by stronger water circulation and catchment erosion due to stronger westerly winds and less lake sheltering. Cooling at the YD onset was ~100 years longer than the final warming, while environmental proxies lagged the onset of cooling by ~90 years, but occurred contemporaneously during the termination of the YD. Chironomid-based temperature reconstructions support recent studies indicating mild YD summer temperatures. Such a comparison of annually-resolved proxy responses to both abrupt YD transitions is rare, because most European lake archives do not preserve varves during the YD. To accomplish the second aim at the DS, microfacies analyses were performed between the UGU (~17 ka) and Holocene onset (~11 ka) in shallow- (Masada) and deep-water (ICDP core) environments. This time interval is marked by a huge but fluctuating lake level drop and therefore the complete transition into the Holocene is only recorded in the deep-basin ICDP core. In this thesis, this transition was investigated for the first time continuously and in detail. The final two pronounced lake level drops recorded by deposition of the UGU and AGU, were interrupted by one millennium of relative depositional stability and a positive water budget as recorded by aragonite varve deposition interrupted by only a few event layers. Further, intercalation of aragonite varves between the gypsum beds of the UGU and AGU shows that these generally dry intervals were also marked by decadal- to centennial-long rises in lake level. While continuous aragonite varves indicate decadal-long stable phases, the occurrence of thicker and more frequent event layers suggests general more instability during the gypsum units. These results suggest a pattern of complex and variable hydroclimate at different time scales during the Lateglacial at the DS. The third aim was accomplished based on the individual studies above that jointly provide an integrated picture of different lake responses to different climate elements of hemispheric-scale abrupt climate changes during the Last Glacial-Interglacial transition. In general, climatically-driven facies changes are more dramatic in the DS than at Lake Gościąż. Further, Lake Gościąż is characterized by continuous varve formation nearly throughout the complete profile, whereas the DS record is widely characterized by extreme event layers, hampering the establishment of a continuous varve chronology. The lateglacial sedimentation in Lake Gościąż is mainly influenced by westerly winds and minor by changes in catchment vegetation, whereas the DS is primarily influenced by changes in winter precipitation, which are caused by temperature variations in the Mediterranean. Interestingly, sedimentation in both archives is more stable during the B{\o}lling/Aller{\o}d and more dynamic during the YD, even when sedimentation processes are different. In summary, this doctoral thesis presents seasonally-resolved records from two lake archives during the Lateglacial (ca 17-11 ka) to investigate the impact of abrupt climate changes in different lake systems. New age constrains from the identification of volcanic glass shards in the lateglacial sediments of the DS allowed the first lithology-based interpretation of the YD in the DS record and its comparison to Lake Gościąż. This highlights the importance of the construction of a robust chronology, and provides a first step for synchronization of the DS with other eastern Mediterranean archives. Further, climate reconstructions from the lake sediments showed variability on different time scales in the different archives, i.e. decadal- to millennial fluctuations in the lateglacial DS, and even annual variations and sub-decadal leads and lags in proxy responses during the rapid YD transitions in Lake Gościąż. This showed the importance of a comparison of different lake archives to better understand the regional and local impacts of hemispheric-scale climate variability. An unprecedented example is demonstrated here of how different lake systems show different lake responses and also react to different climate elements of abrupt climate changes. This further highlights the importance of the understanding of the respective lake system for climate reconstructions.}, language = {en} } @phdthesis{Pan2022, author = {Pan, Mengdi}, title = {Systematic studies on the thermodynamic properties of gas hydrates and their formation/dissociation/transformation behaviors}, doi = {10.25932/publishup-55476}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-554760}, school = {Universit{\"a}t Potsdam}, pages = {XX, 192}, year = {2022}, abstract = {Gas hydrates are ice-like crystalline compounds made of water cavities that retain various types of guest molecules. Natural gas hydrates are CH4-rich but also contain higher hydrocarbons as well as CO2, H2S, etc. They are highly dependent of local pressure and temperature conditions. Considering the high energy content, natural gas hydrates are artificially dissociated for the production of methane gas. Besides, they may also dissociate in response to global warming. It is therefore crucial to investigate the hydrate nucleation and growth process at a molecular level. The understanding of how guest molecules in the hydrate cavities respond to warming climate or gas injection is also of great importance. This thesis is concerned with a systematic investigation of simple and mixed gas hydrates at conditions relevant to the natural hydrate reservoir in Qilian Mountain permafrost, China. A high-pressure cell that integrated into the confocal Raman spectroscopy ensured a precise and continuous characterization of the hydrate phase during formation/dissociation/transformation processes with a high special and spectral resolution. By applying laboratory experiments, the formation of mixed gas hydrates containing other hydrocarbons besides methane was simulated in consideration of the effects from gas supply conditions and sediments. The results revealed a preferential enclathration of different guest molecules in hydrate cavities and further refute the common hypothesis of the coexistence of hydrate phases due to a changing feed gas phase. However, the presence of specific minerals and organic compounds in sediments may have significant impacts on the coexisting solid phases. With regard to the dissociation, the formation damage caused by fines mobilization and migration during hydrate decomposition was reported for the first time, illustrating the complex interactions between fine grains and hydrate particles. Gas hydrates, starting from simple CH4 hydrates to binary CH4—C3H8 hydrates and multi-component mixed hydrates were decomposed by thermal stimulation mimicking global warming. The mechanisms of guest substitution in hydrate structures were studied through the experimental data obtained from CH4—CO2, CH4—mixed gas hydrates and mixed gas hydrates—CO2 systems. For the first time, a second transformation behavior was documented during the transformation process from CH4 hydrates to CO2-rich mixed hydrates. Most of the crystals grew or maintained when exposed to CO2 gas while some others decreased in sizes and even disappeared over time. The highlight of the two last experimental simulations was to visualize and characterize the hydrate crystals which were at different structural transition stages. These experimental simulations enhanced our knowledge about the mixed gas hydrates in natural reservoirs and improved our capability to assess the response to global warming.}, language = {en} }