@misc{LauterbachWittPlessenetal.2017, author = {Lauterbach, Stefan and Witt, Roman and Plessen, Birgit and Dulski, Peter and Prasad, Sushma and Mingram, Jens and Gleixner, Gerd and Hettler-Riedel, Sabine and Stebich, Martina and Schnetger, Bernhard and Schwalb, Antje and Schwarz, Anja}, title = {Climatic imprint of the mid-latitude Westerlies in the Central Tian Shan of Kyrgyzstan and teleconnections to North Atlantic climate variability during the last 6000 years}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-404085}, pages = {15}, year = {2017}, abstract = {In general, a moderate drying trend is observed in mid-latitude arid Central Asia since the Mid-Holocene, attributed to the progressively weakening influence of the mid-latitude Westerlies on regional climate. However, as the spatio-temporal pattern of this development and the underlying climatic mechanisms are yet not fully understood, new high-resolution paleoclimate records from this region are needed. Within this study, a sediment core from Lake Son Kol (Central Kyrgyzstan) was investigated using sedimentological, (bio) geochemical, isotopic, and palynological analyses, aiming at reconstructing regional climate development during the last 6000 years. Biogeochemical data, mainly reflecting summer moisture conditions, indicate predominantly wet conditions until 4950 cal. yr BP, succeeded by a pronounced dry interval between 4950 and 3900 cal. yr BP. In the following, a return to wet conditions and a subsequent moderate drying trend until present times are observed. This is consistent with other regional paleoclimate records and likely reflects the gradual Late Holocene diminishment of the amount of summer moisture provided by the mid-latitude Westerlies. However, climate impact of the Westerlies was apparently not only restricted to the summer season but also significant during winter as indicated by recurrent episodes of enhanced allochthonous input through snowmelt, occurring before 6000 cal. yr BP and at 5100-4350, 3450-2850, and 1900-1500 cal. yr BP. The distinct similar to 1500year periodicity of these episodes of increased winter precipitation in Central Kyrgyzstan resembles similar cyclicities observed in paleoclimate records around the North Atlantic, likely indicating a hemispheric-scale climatic teleconnection and an impact of North Atlantic Oscillation (NAO) variability in Central Asia.}, language = {en} } @misc{Herzschuh2020, author = {Herzschuh, Ulrike}, title = {Legacy of the Last Glacial on the present-day distribution of deciduous versus evergreen boreal forests}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {2}, issn = {1866-8372}, doi = {10.25932/publishup-52405}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-524057}, pages = {11}, year = {2020}, abstract = {Issue Despite their rather similar climatic conditions, eastern Eurasia and northern North America are largely covered by different plant functional types (deciduous or evergreen boreal forest) composed of larch or pine, spruce and fir, respectively. I propose that these deciduous and evergreen boreal forests represent alternative quasi-stable states, triggered by their different northern tree refugia that reflect the different environmental conditions experienced during the Last Glacial. Evidence This view is supported by palaeoecological and environmental evidence. Once established, Asian larch forests are likely to have stabilized through a complex vegetation-fire-permafrost soil-climate feedback system. Conclusion With respect to future forest developments, this implies that Asian larch forests are likely to be governed by long-term trajectories and are therefore largely resistant to natural climate variability on time-scales shorter than millennia. The effects of regional human impact and anthropogenic global warming might, however, cause certain stability thresholds to be crossed, meaning that irreversible transitions occur and resulting in marked consequences for ecosystem services on these human-relevant time-scales.}, language = {en} } @misc{ReschkeKroenerLaepple2021, author = {Reschke, Maria and Kr{\"o}ner, Igor and Laepple, Thomas}, title = {Testing the consistency of Holocene and Last Glacial Maximum spatial correlations in temperature proxy records}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {1}, issn = {1866-8372}, doi = {10.25932/publishup-53819}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-538197}, pages = {20 -- 28}, year = {2021}, abstract = {Holocene temperature proxy records are commonly used in quantitative synthesis and model-data comparisons. However, comparing correlations between time series from records collected in proximity to one another with the expected correlations based on climate model simulations indicates either regional or noisy climate signals in Holocene temperature proxy records. In this study, we evaluate the consistency of spatial correlations present in Holocene proxy records with those found in data from the Last Glacial Maximum (LGM). Specifically, we predict correlations expected in LGM proxy records if the only difference to Holocene correlations would be due to more time uncertainty and more climate variability in the LGM. We compare this simple prediction to the actual correlation structure in the LGM proxy records. We found that time series data of ice-core stable isotope records and planktonic foraminifera Mg/Ca ratios were consistent between the Holocene and LGM periods, while time series of Uk'37 proxy records were not as we found no correlation between nearby LGM records. Our results support the finding of highly regional or noisy marine proxy records in the compilation analysed here and suggest the need for further studies on the role of climate proxies and the processes of climate signal recording and preservation.}, language = {en} }