@article{HoffmannHoelkerEccard2022, author = {Hoffmann, Julia and H{\"o}lker, Franz and Eccard, Jana}, title = {Welcome to the Dark Side}, series = {Frontiers in Ecology and Evolution}, volume = {9}, journal = {Frontiers in Ecology and Evolution}, publisher = {Frontiers Media}, address = {Lausanne}, issn = {2296-701X}, doi = {10.3389/fevo.2021.779825}, pages = {11}, year = {2022}, abstract = {Differences in natural light conditions caused by changes in moonlight are known to affect perceived predation risk in many nocturnal prey species. As artificial light at night (ALAN) is steadily increasing in space and intensity, it has the potential to change movement and foraging behavior of many species as it might increase perceived predation risk and mask natural light cycles. We investigated if partial nighttime illumination leads to changes in foraging behavior during the night and the subsequent day in a small mammal and whether these changes are related to animal personalities. We subjected bank voles to partial nighttime illumination in a foraging landscape under laboratory conditions and in large grassland enclosures under near natural conditions. We measured giving-up density of food in illuminated and dark artificial seed patches and video recorded the movement of animals. While animals reduced number of visits to illuminated seed patches at night, they increased visits to these patches at the following day compared to dark seed patches. Overall, bold individuals had lower giving-up densities than shy individuals but this difference increased at day in formerly illuminated seed patches. Small mammals thus showed carry-over effects on daytime foraging behavior due to ALAN, i.e., nocturnal illumination has the potential to affect intra- and interspecific interactions during both night and day with possible changes in personality structure within populations and altered predator-prey dynamics.}, language = {en} } @article{Martens2011, author = {Martens, D{\"o}rte}, title = {Well-being and acceptance - contradictory aims in forest management?}, series = {Eco.mont : journal on protected mountain areas research}, volume = {3}, journal = {Eco.mont : journal on protected mountain areas research}, number = {2}, publisher = {Austrian Academy of Sciences Press}, address = {Wien}, issn = {2073-106X}, pages = {63 -- 65}, year = {2011}, abstract = {Urban forests fulfil various functions, among them the restoration process and aesthetical needs of urban residents. This article reflects the attitudes towards different managed forests on the one hand and their influence on psychological well-being on the other. Results of empirical approaches from both fields show some inconsistency, suggesting that people have a more positive attitude towards wild forest areas, while the effect on well-being is more positive after a walk in tended forest areas. A discussion follows on the link between perception and the effect of urban forests. An outlook on necessary research reveals the need for longitudinal research. The article concludes by showing management implications.}, language = {en} } @misc{BoekerHermanussenScheffler2021, author = {Boeker, Sonja and Hermanussen, Michael and Scheffler, Christiane}, title = {Westernization of self-perception in modern affluent Indonesian school children}, series = {Human Biology and Public Health}, volume = {2021}, journal = {Human Biology and Public Health}, number = {1}, editor = {Scheffler, Christiane and Koziel, Slawomir and Hermanussen, Michael and Bogin, Barry}, publisher = {Universit{\"a}tsverlag Potsdam}, address = {Potsdam}, issn = {2748-9957}, doi = {10.52905/hbph.v1.4}, pages = {1 -- 13}, year = {2021}, abstract = {Background Subjective Social Status is used as an important predictor for psychological and physiological findings, most commonly measured with the MacArthur Scale (Ladder Test). Previous studies have shown that this test fits better in Western cultures. The idea of a social ladder itself and ranking oneself "higher" or "lower" is a concept that accords to the Western thinking. Objectives We hypothesize that in a culture where only the elites have adapted to a Western lifestyle, the test results reflect a higher level of accuracy for this stratum. We also expect that self-perception differs per sex. Sample and Methods We implemented the Ladder Test in a study of Indonesian schoolchildren aged between 5 and 13 years (boys N = 369, girls N= 364) from non-private and private schools in Kupang in 2020. Results Our analysis showed that the Ladder Test results were according to the Western expectations only for the private school, as the Ladder Scores significantly decreased with age (LM: p = 0.04). The Ladder Test results are best explained by "Education Father" for the non-private school pupils (p = 0.01) and all boys (p = 0.04), by "School Grades" for the private school cohort (p = 0.06) and by "Household Score" for girls (p =0.09). Conclusion This finding indicates that the concept of ranking oneself "high" or "low" on a social ladder is strongly implicated with Western ideas. A ladder implies social movement by "climbing" up or down. According to that, reflection of self-perception is influenced by culture.}, language = {en} } @phdthesis{CamaraMattosMartins2011, author = {Camara Mattos Martins, Marina}, title = {What are the downstream targets of trehalose-6-phosphate signalling in plants?}, address = {Potsdam}, pages = {164 S.}, year = {2011}, language = {en} } @article{ChorusSpijkerman2020, author = {Chorus, Ingrid and Spijkerman, Elly}, title = {What Colin Reynolds could tell us about nutrient limitation, N:P ratios and eutrophication control}, series = {Hydrobiologia : acta hydrobiologica, hydrographica, limnologica et protistologica}, volume = {848}, journal = {Hydrobiologia : acta hydrobiologica, hydrographica, limnologica et protistologica}, number = {1}, publisher = {Springer Nature}, address = {Berlin}, issn = {0018-8158}, doi = {10.1007/s10750-020-04377-w}, pages = {95 -- 111}, year = {2020}, abstract = {Colin Reynolds exquisitely consolidated our understanding of driving forces shaping phytoplankton communities and those setting the upper limit to biomass yield, with limitation typically shifting from light in winter to phosphorus in spring. Nonetheless, co-limitation is frequently postulated from enhanced growth responses to enrichments with both N and P or from N:P ranging around the Redfield ratio, concluding a need to reduce both N and P in order to mitigate eutrophication. Here, we review the current understanding of limitation through N and P and of co-limitation. We conclude that Reynolds is still correct: (i) Liebig's law of the minimum holds and reducing P is sufficient, provided concentrations achieved are low enough; (ii) analyses of nutrient limitation need to exclude evidently non-limiting situations, i.e. where soluble P exceeds 3-10 mu g/l, dissolved N exceeds 100-130 mu g/l and total P and N support high biomass levels with self-shading causing light limitation; (iii) additionally decreasing N to limiting concentrations may be useful in specific situations (e.g. shallow waterbodies with high internal P and pronounced denitrification); (iv) management decisions require local, situation-specific assessments. The value of research on stoichiometry and co-limitation lies in promoting our understanding of phytoplankton ecophysiology and community ecology.}, language = {en} } @misc{ChorusSpijkerman2020, author = {Chorus, Ingrid and Spijkerman, Elly}, title = {What Colin Reynolds could tell us about nutrient limitation, N:P ratios and eutrophication control}, series = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {1}, issn = {1866-8372}, doi = {10.25932/publishup-54197}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-541979}, pages = {19}, year = {2020}, abstract = {Colin Reynolds exquisitely consolidated our understanding of driving forces shaping phytoplankton communities and those setting the upper limit to biomass yield, with limitation typically shifting from light in winter to phosphorus in spring. Nonetheless, co-limitation is frequently postulated from enhanced growth responses to enrichments with both N and P or from N:P ranging around the Redfield ratio, concluding a need to reduce both N and P in order to mitigate eutrophication. Here, we review the current understanding of limitation through N and P and of co-limitation. We conclude that Reynolds is still correct: (i) Liebig's law of the minimum holds and reducing P is sufficient, provided concentrations achieved are low enough; (ii) analyses of nutrient limitation need to exclude evidently non-limiting situations, i.e. where soluble P exceeds 3-10 mu g/l, dissolved N exceeds 100-130 mu g/l and total P and N support high biomass levels with self-shading causing light limitation; (iii) additionally decreasing N to limiting concentrations may be useful in specific situations (e.g. shallow waterbodies with high internal P and pronounced denitrification); (iv) management decisions require local, situation-specific assessments. The value of research on stoichiometry and co-limitation lies in promoting our understanding of phytoplankton ecophysiology and community ecology.}, language = {en} } @article{SchefflerHermanussen2023, author = {Scheffler, Christiane and Hermanussen, Michael}, title = {What does stunting tell us?}, series = {Human biology and public health}, volume = {2022}, journal = {Human biology and public health}, number = {3}, publisher = {Universit{\"a}tsverlag Potsdam}, address = {Potsdam}, issn = {2748-9957}, doi = {10.52905/hbph2022.3.36}, pages = {1 -- 15}, year = {2023}, abstract = {Stunting is commonly linked with undernutrition. Yet, already after World War I, German pediatricians questioned this link and stated that no association exists between nutrition and height. Recent analyses within different populations of Low- and middle-income countries with high rates of stunted children failed to support the assumption that stunted children have a low BMI and skinfold sickness as signs of severe caloric deficiency. So, stunting is not a synonym of malnutrition. Parental education level has a positive influence on body height in stunted populations, e.g., in India and in Indonesia. Socially disadvantaged children tend to be shorter and lighter than children from affluent families. Humans are social mammals; they regulate growth similar to other social mammals. Also in humans, body height is strongly associated with the position within the social hierarchy, reflecting the personal and group-specific social, economic, political, and emotional environment. These non-nutritional impact factors on growth are summarized by the concept of SEPE (Social-Economic-Political-Emotional) factors. SEPE reflects on prestige, dominance-subordination, social identity, and ego motivation of individuals and social groups.}, language = {en} } @article{LehmannScheffler2016, author = {Lehmann, Andreas and Scheffler, Christiane}, title = {What does the mean menarcheal age mean?An analysis of temporal pattern in variability in a historical swiss population from the 19th and 20th centuries}, series = {American journal of human biology : the official journal of the Human Biology Council}, volume = {28}, journal = {American journal of human biology : the official journal of the Human Biology Council}, publisher = {Wiley-Blackwell}, address = {Hoboken}, issn = {1042-0533}, doi = {10.1002/ajhb.22854}, pages = {705 -- 713}, year = {2016}, abstract = {ObjectivesAge at menarche is one of the most important factors when observing growth and development. The aim of this study was to assess the temporal pattern in variability of menarcheal age for a historic Swiss population from the 19th and 20th centuries. ResultsMean menarcheal age declined from 17.34 years (n=358) around 1830 to 13.80 years (n=141) around 1950. Within-cohort variance decreased from 7.5 to 2.1 year(2). Skewness was negatively correlated with birth year (r=-0.58). ConclusionThis study provided evidence for a secular trend in various statistical parameters for age at menarche since the 19th century. Furthermore, the results of the analysis of temporal pattern in variability revealed that the secular trend in menarcheal age happened in two phases. Am. J. Hum. Biol. 28:705-713, 2016. (c) 2016 Wiley Periodicals, Inc.}, language = {en} } @article{BergerWaltersGotthard2008, author = {Berger, Dieter and Walters, R. J. and Gotthard, K.}, title = {What limits insect fecundity? : Body size- and temperature-dependent egg maturation and oviposition in a butterfly}, issn = {0269-8463}, doi = {10.1111/j.1365-2435.2008.01392.x}, year = {2008}, abstract = {* 1. Large female insects usually have high potential fecundity. Therefore selection should favour an increase in body size given that these females get opportunities to realize their potential advantage by maturing and laying more eggs. However, ectotherm physiology is strongly temperature-dependent, and activities are carried out sufficiently only within certain temperature ranges. Thus it remains unclear if the fecundity advantage of a large size is fully realized in natural environments, where thermal conditions are limiting. * 2. Insect fecundity might be limited by temperature at two levels; first eggs need to mature, and then the female needs time for strategic ovipositing of the egg. Since a female cannot foresee the number of oviposition opportunities that she will encounter on a given day, the optimal rate of egg maturation will be governed by trade-offs associated with egg- and time-limited oviposition. As females of different sizes will have different amounts of body reserves, size-dependent allocation trade-offs between the mother"s condition and her egg production might be expected. * 3. In the temperate butterfly Pararge aegeria, the time and temperature dependence of oviposition and egg maturation, and the interrelatedness of these two processes were investigated in a series of laboratory experiments, allowing a decoupling of the time budgets for the respective processes. * 4. The results show that realized fecundity of this species can be limited by both the temperature dependence of egg maturation and oviposition under certain thermal regimes. Furthermore, rates of oviposition and egg maturation seemed to have regulatory effects upon each other. Early reproductive output was correlated with short life span, indicating a cost of reproduction. Finally, large females matured more eggs than small females when deprived of oviposition opportunities. Thus, the optimal allocation of resources to egg production seems dependent on female size. * 5. This study highlights the complexity of processes underlying rates of egg maturation and oviposition in ectotherms under natural conditions. We further discuss the importance of temperature variation for egg- vs. time-limited fecundity and the consequences for the evolution of female body size in insects.}, language = {en} } @article{DreyerBlatt2009, author = {Dreyer, Ingo and Blatt, Michael R.}, title = {What makes a gate? : the ins and outs of Kv-like K+ channels in plants}, issn = {1360-1385}, doi = {10.1016/j.tplants.2009.04.001}, year = {2009}, abstract = {Gating of K+ and other ion channels is 'hard-wired' within the channel protein. So it remains a puzzle how closely related channels in plants can show an unusually diverse range of biophysical properties. Gating of these channels lies at the heart of K+ mineral nutrition, signalling, abiotic and biotic stress responses in plants. Thus, our knowledge of the molecular mechanics underpinning K+ channel gating will be important for rational engineering of related traits in agricultural crops. Several key studies have added significantly to our understanding of channel gating in plants and have challenged current thinking about analogous processes found in animal K+ channels. Such studies highlight how much of K+ channel gating remains to be explored in plants.}, language = {en} } @misc{BeckBallesterosMejiaBuchmannetal.2012, author = {Beck, Jan and Ballesteros-Mejia, Liliana and Buchmann, Carsten M. and Dengler, J{\"u}rgen and Fritz, Susanne A. and Gruber, Bernd and Hof, Christian and Jansen, Florian and Knapp, Sonja and Kreft, Holger and Schneider, Anne-Kathrin and Winter, Marten and Dormann, Carsten F.}, title = {What's on the horizon for macroecology?}, series = {Ecography : pattern and diversity in ecology ; research papers forum}, volume = {35}, journal = {Ecography : pattern and diversity in ecology ; research papers forum}, number = {8}, publisher = {Wiley-Blackwell}, address = {Hoboken}, issn = {0906-7590}, doi = {10.1111/j.1600-0587.2012.07364.x}, pages = {673 -- 683}, year = {2012}, abstract = {Over the last two decades, macroecology the analysis of large-scale, multi-species ecological patterns and processes has established itself as a major line of biological research. Analyses of statistical links between environmental variables and biotic responses have long and successfully been employed as a main approach, but new developments are due to be utilized. Scanning the horizon of macroecology, we identified four challenges that will probably play a major role in the future. We support our claims by examples and bibliographic analyses. 1) Integrating the past into macroecological analyses, e.g. by using paleontological or phylogenetic information or by applying methods from historical biogeography, will sharpen our understanding of the underlying reasons for contemporary patterns. 2) Explicit consideration of the local processes that lead to the observed larger-scale patterns is necessary to understand the fine-grain variability found in nature, and will enable better prediction of future patterns (e.g. under environmental change conditions). 3) Macroecology is dependent on large-scale, high quality data from a broad spectrum of taxa and regions. More available data sources need to be tapped and new, small-grain large-extent data need to be collected. 4) Although macroecology already lead to mainstreaming cutting-edge statistical analysis techniques, we find that more sophisticated methods are needed to account for the biases inherent to sampling at large scale. Bayesian methods may be particularly suitable to address these challenges. To continue the vigorous development of the macroecological research agenda, it is time to address these challenges and to avoid becoming too complacent with current achievements.}, language = {en} } @article{AlbertGrasseinSchurretal.2011, author = {Albert, C{\´e}cile H. and Grassein, Fabrice and Schurr, Frank Martin and Vieilledent, Ghislain and Violle, Cyrille}, title = {When and how should intraspecific variability be considered in trait-based plant ecology?}, series = {Perspectives in plant ecology, evolution and systematics}, volume = {13}, journal = {Perspectives in plant ecology, evolution and systematics}, number = {3}, publisher = {Elsevier}, address = {Jena}, issn = {1433-8319}, doi = {10.1016/j.ppees.2011.04.003}, pages = {217 -- 225}, year = {2011}, abstract = {Trait-based studies have become extremely common in plant ecology. Trait-based approaches often rely on the tacit assumption that intraspecific trait variability (ITV) is negligible compared to interspecific variability, so that species can be characterized by mean trait values. Yet, numerous recent studies have challenged this assumption by showing that ITV significantly affects various ecological processes. Accounting for ITV may thus strengthen trait-based approaches, but measuring trait values on a large number of individuals per species and site is not feasible. Therefore, it is important and timely to synthesize existing knowledge on ITV in order to (1) decide critically when ITV should be considered, and (2) establish methods for incorporating this variability. Here we propose a practical set of rules to identify circumstances under which ITV should be accounted for. We formulate a spatial trait variance partitioning hypothesis to highlight the spatial scales at which ITV cannot be ignored in ecological studies. We then refine a set of four consecutive questions on the research question, the spatial scale, the sampling design, and the type of studied traits, to determine case-by-case if a given study should quantify ITV and test its effects. We review methods for quantifying ITV and develop a step-by-step guideline to design and interpret simulation studies that test for the importance of ITV. Even in the absence of quantitative knowledge on ITV, its effects can be assessed by varying trait values within species within realistic bounds around the known mean values. We finish with a discussion of future requirements to further incorporate ITV within trait-based approaches. This paper thus delineates a general framework to account for ITV and suggests a direction towards a more quantitative trait-based ecology.}, language = {en} } @article{PlueDeFrenneAcharyaetal.2017, author = {Plue, Jan and De Frenne, Pieter and Acharya, Kamal and Brunet, J{\"o}rg and Chabrerie, Olivier and Decocq, Guillaume and Diekmann, Martin and Graae, Bente J. and Heinken, Thilo and Hermy, Martin and Kolb, Annette and Lemke, Isgard and Liira, Jaan and Naaf, Tobias and Verheyen, Kris and Wulf, Monika and Cousins, Sara A. O.}, title = {Where does the community start, and where does it end?}, series = {Journal of vegetation science}, volume = {28}, journal = {Journal of vegetation science}, number = {2}, publisher = {Wiley}, address = {Hoboken}, issn = {1100-9233}, doi = {10.1111/jvs.12493}, pages = {424 -- 435}, year = {2017}, abstract = {QuestionBelow-ground processes are key determinants of above-ground plant population and community dynamics. Still, our understanding of how environmental drivers shape plant communities is mostly based on above-ground diversity patterns, bypassing below-ground plant diversity stored in seed banks. As seed banks may shape above-ground plant communities, we question whether concurrently analysing the above- and below-ground species assemblages may potentially enhance our understanding of community responses to environmental variation. LocationTemperate deciduous forests along a 2000km latitudinal gradient in NW Europe. MethodsHerb layer, seed bank and local environmental data including soil pH, canopy cover, forest cover continuity and time since last canopy disturbance were collected in 129 temperate deciduous forest plots. We quantified herb layer and seed bank diversity per plot and evaluated how environmental variation structured community diversity in the herb layer, seed bank and the combined herb layer-seed bank community. ResultsSeed banks consistently held more plant species than the herb layer. How local plot diversity was partitioned across the herb layer and seed bank was mediated by environmental variation in drivers serving as proxies of light availability. The herb layer and seed bank contained an ever smaller and ever larger share of local diversity, respectively, as both canopy cover and time since last canopy disturbance decreased. Species richness and -diversity of the combined herb layer-seed bank community responded distinctly differently compared to the separate assemblages in response to environmental variation in, e.g. forest cover continuity and canopy cover. ConclusionsThe seed bank is a below-ground diversity reservoir of the herbaceous forest community, which interacts with the herb layer, although constrained by environmental variation in e.g. light availability. The herb layer and seed bank co-exist as a single community by means of the so-called storage effect, resulting in distinct responses to environmental variation not necessarily recorded in the individual herb layer or seed bank assemblages. Thus, concurrently analysing above- and below-ground diversity will improve our ecological understanding of how understorey plant communities respond to environmental variation.}, language = {en} } @article{SchneidervanSchaikZangerleetal.2016, author = {Schneider, A. -K. and van Schaik, L. and Zangerle, A. and Eccard, Jana and Schroeder, B.}, title = {Which abiotic filters shape earthworm distribution patterns at the catchment scale?}, series = {European journal of soil science}, volume = {67}, journal = {European journal of soil science}, publisher = {Wiley-Blackwell}, address = {Hoboken}, issn = {1351-0754}, doi = {10.1111/ejss.12346}, pages = {431 -- 442}, year = {2016}, abstract = {Earthworms affect various soil ecosystem processes in their role as ecosystem engineers. The spatial distribution of earthworms determines the spatial distribution of their functional effects. In particular, earthworm-induced macropore networks may act as preferential flow pathways. In this research we aimed to determine earthworm distributions at the catchment scale with species distribution models (SDMs). We used land-use types, temporally invariant topography-related variables and plot-scale soil characteristics such as pH and organic matter content. We used data from spring 2013 to estimate probability distributions of the occurrence of ten earthworm species. To assess the robustness of these models, we tested temporal transferability by evaluating the accuracy of predictions from the models derived for the spring data with the predictions from data of two other field surveys in autumn 2012 and 2013. In addition, we compared the performance of SDMs based (i) on temporally varying plot-scale predictor variables with (ii) those based on temporally invariant catchment-scale predictors. Models based on catchment-scale predictors, especially land use and slope, experience a small loss of predictive performance only compared with plot-scale SDMs but have greater temporal transferability. Earthworm distribution maps derived from this kind of SDM are a prerequisite for understanding the spatial distribution patterns of functional effects related to earthworms.}, language = {en} } @phdthesis{Itonaga2009, author = {Itonaga, Naomi}, title = {White storks (Ciconia ciconia) of Eastern Germany: age-dependent breeding ability, and age- and density-dependent effects on dispersal behavior}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-39052}, school = {Universit{\"a}t Potsdam}, year = {2009}, abstract = {Dispersal behavior plays an important role for the geographical distribution and population structure of any given species. Individual's fitness, reproductive and competitive ability, and dispersal behavior can be determined by the age of the individual. Age-dependent as well as density-dependent dispersal patterns are common in many bird species. In this thesis, I first present age-dependent breeding ability and natal site fidelity in white storks (Ciconia ciconia); migratory birds breeding in large parts of Europe. I predicted that both the proportion of breeding birds and natal site fidelity increase with the age. After the seventies of the last century, following a steep population decline, a recovery of the white stork population has been observed in many regions in Europe. Increasing population density in the white stork population in Eastern Germany especially after 1983 allowed examining density- as well as age-dependent breeding dispersal patterns. Therefore second, I present whether: young birds show more often and longer breeding dispersal than old birds, and frequency of dispersal events increase with the population density increase, especially in the young storks. Third, I present age- and density-dependent dispersal direction preferences in the give population. I asked whether and how the major spring migration direction interacts with dispersal directions of white storks: in different age, and under different population densities. The proportion of breeding individuals increased in the first 22 years of life and then decreased suggesting, the senescent decay in aging storks. Young storks were more faithful to their natal sites than old storks probably due to their innate migratory direction and distance. Young storks dispersed more frequently than old storks in general, but not for longer distance. Proportion of dispersing individuals increased significantly with increasing population densities indicating, density- dependent dispersal behavior in white storks. Moreover, the finding of a significant interaction effects between the age of dispersing birds and year (1980-2006) suggesting, older birds dispersed more from their previous nest sites over time due to increased competition. Both young and old storks dispersed along their spring migration direction; however, directional preferences were different in young storks and old storks. Young storks tended to settle down before reaching their previous nest sites (leading to the south-eastward dispersal) while old birds tended to keep migrating along the migration direction after reaching their previous nest sites (leading to the north-westward dispersal). Cues triggering dispersal events may be age-dependent. Changes in the dispersal direction over time were observed. Dispersal direction became obscured during the second half of the observation period (1993-2006). Increase in competition may affect dispersal behavior in storks. I discuss the potential role of: age for the observed age-dependent dispersal behavior, and competition for the density dependent dispersal behavior. This Ph.D. thesis contributes significantly to the understanding of population structure and geographical distribution of white storks. Moreover, presented age- and density (competition)-dependent dispersal behavior helps understanding underpinning mechanisms of dispersal behavior in bird species.}, language = {en} } @article{RaatzPirhoferWalzlMuelleretal.2021, author = {Raatz, Larissa and Pirhofer-Walzl, Karin and M{\"u}ller, Marina E.H. and Scherber, Christoph and Joshi, Jasmin Radha}, title = {Who is the culprit: Is pest infestation responsible for crop yield losses close to semi-natural habitats?}, series = {Ecology and Evolution}, volume = {11}, journal = {Ecology and Evolution}, edition = {19}, publisher = {Wiley-Blackwell}, address = {Oxford}, issn = {1467-6435}, doi = {10.1002/ece3.8046}, pages = {13232 -- 13246}, year = {2021}, abstract = {Semi-natural habitats (SNHs) are becoming increasingly scarce in modern agricultural landscapes. This may reduce natural ecosystem services such as pest control with its putatively positive effect on crop production. In agreement with other studies, we recently reported wheat yield reductions at field borders which were linked to the type of SNH and the distance to the border. In this experimental landscape-wide study, we asked whether these yield losses have a biotic origin while analyzing fungal seed and fungal leaf pathogens, herbivory of cereal leaf beetles, and weed cover as hypothesized mediators between SNHs and yield. We established experimental winter wheat plots of a single variety within conventionally managed wheat fields at fixed distances either to a hedgerow or to an in-field kettle hole. For each plot, we recorded the fungal infection rate on seeds, fungal infection and herbivory rates on leaves, and weed cover. Using several generalized linear mixed-effects models as well as a structural equation model, we tested the effects of SNHs at a field scale (SNH type and distance to SNH) and at a landscape scale (percentage and diversity of SNHs within a 1000-m radius). In the dry year of 2016, we detected one putative biotic culprit: Weed cover was negatively associated with yield values at a 1-m and 5-m distance from the field border with a SNH. None of the fungal and insect pests, however, significantly affected yield, neither solely nor depending on type of or distance to a SNH. However, the pest groups themselves responded differently to SNH at the field scale and at the landscape scale. Our findings highlight that crop losses at field borders may be caused by biotic culprits; however, their negative impact seems weak and is putatively reduced by conventional farming practices.}, language = {en} } @article{RaatzPirhoferWalzlMuelleretal.2021, author = {Raatz, Larissa and Pirhofer-Walzl, Karin and M{\"u}ller, Marina E.H. and Scherber, Christoph and Joshi, Jasmin Radha}, title = {Who is the culprit: Is pest infestation responsible for crop yield losses close to semi-natural habitats?}, series = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, publisher = {Universit{\"a}tsverlag Potsdam}, address = {Potsdam}, issn = {1866-8372}, doi = {10.25932/publishup-54962}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-549622}, pages = {13232 -- 13246}, year = {2021}, abstract = {Semi-natural habitats (SNHs) are becoming increasingly scarce in modern agricultural landscapes. This may reduce natural ecosystem services such as pest control with its putatively positive effect on crop production. In agreement with other studies, we recently reported wheat yield reductions at field borders which were linked to the type of SNH and the distance to the border. In this experimental landscape-wide study, we asked whether these yield losses have a biotic origin while analyzing fungal seed and fungal leaf pathogens, herbivory of cereal leaf beetles, and weed cover as hypothesized mediators between SNHs and yield. We established experimental winter wheat plots of a single variety within conventionally managed wheat fields at fixed distances either to a hedgerow or to an in-field kettle hole. For each plot, we recorded the fungal infection rate on seeds, fungal infection and herbivory rates on leaves, and weed cover. Using several generalized linear mixed-effects models as well as a structural equation model, we tested the effects of SNHs at a field scale (SNH type and distance to SNH) and at a landscape scale (percentage and diversity of SNHs within a 1000-m radius). In the dry year of 2016, we detected one putative biotic culprit: Weed cover was negatively associated with yield values at a 1-m and 5-m distance from the field border with a SNH. None of the fungal and insect pests, however, significantly affected yield, neither solely nor depending on type of or distance to a SNH. However, the pest groups themselves responded differently to SNH at the field scale and at the landscape scale. Our findings highlight that crop losses at field borders may be caused by biotic culprits; however, their negative impact seems weak and is putatively reduced by conventional farming practices.}, language = {en} } @article{BjornerasWeyhenmeyerEvansetal.2017, author = {Bjorneras, C. and Weyhenmeyer, G. A. and Evans, C. D. and Gessner, M. O. and Grossart, Hans-Peter and Kangur, K. and Kokorite, I. and Kortelainen, P. and Laudon, H. and Lehtoranta, J. and Lottig, N. and Monteith, D. T. and Noges, P. and Noges, T. and Oulehle, F. and Riise, G. and Rusak, J. A. and Raike, A. and Sire, J. and Sterling, S. and Kritzberg, E. S.}, title = {Widespread Increases in Iron Concentration in European and North American Freshwaters}, series = {Global biogeochemical cycles}, volume = {31}, journal = {Global biogeochemical cycles}, publisher = {American Geophysical Union}, address = {Washington}, issn = {0886-6236}, doi = {10.1002/2017GB005749}, pages = {1488 -- 1500}, year = {2017}, abstract = {Recent reports of increasing iron (Fe) concentrations in freshwaters are of concern, given the fundamental role of Fe in biogeochemical processes. Still, little is known about the frequency and geographical distribution of Fe trends or about the underlying drivers. We analyzed temporal trends of Fe concentrations across 340 water bodies distributed over 10 countries in northern Europe and North America in order to gain a clearer understanding of where, to what extent, and why Fe concentrations are on the rise. We found that Fe concentrations have significantly increased in 28\% of sites, and decreased in 4\%, with most positive trends located in northern Europe. Regions with rising Fe concentrations tend to coincide with those with organic carbon (OC) increases. Fe and OC increases may not be directly mechanistically linked, but may nevertheless be responding to common regional-scale drivers such as declining sulfur deposition or hydrological changes. A role of hydrological factors was supported by covarying trends in Fe and dissolved silica, as these elements tend to stem from similar soil depths. A positive relationship between Fe increases and conifer cover suggests that changing land use and expanded forestry could have contributed to enhanced Fe export, although increases were also observed in nonforested areas. We conclude that the phenomenon of increasing Fe concentrations is widespread, especially in northern Europe, with potentially significant implications for wider ecosystem biogeochemistry, and for the current browning of freshwaters.}, language = {en} } @article{MrochenSchulzFischeretal.2018, author = {Mrochen, Daniel M. and Schulz, Daniel and Fischer, Stefan and Jeske, Kathrin and El Gohary, Heba and Reil, Daniela and Imholt, Christian and Truebe, Patricia and Suchomel, Josef and Tricaud, Emilie and Jacob, Jens and Heroldova, Marta and Br{\"o}ker, Barbara M. and Strommenger, Birgit and Walther, Birgit and Ulrich, Rainer G. and Holtfreter, Silva}, title = {Wild rodents and shrews are natural hosts of Staphylococcus aureus}, series = {International Journal of Medical Microbiology}, volume = {308}, journal = {International Journal of Medical Microbiology}, number = {6}, publisher = {Elsevier}, address = {Jena}, issn = {1438-4221}, doi = {10.1016/j.ijmm.2017.09.014}, pages = {590 -- 597}, year = {2018}, abstract = {Laboratory mice are the most commonly used animal model for Staphylococcus aureus infection studies. We have previously shown that laboratory mice from global vendors are frequently colonized with S. aureus. Laboratory mice originate from wild house mice. Hence, we investigated whether wild rodents, including house mice, as well as shrews are naturally colonized with S. aureus and whether S. aureus adapts to the wild animal host. 295 animals of ten different species were caught in different locations over four years (2012-2015) in Germany, France and the Czech Republic. 45 animals were positive for S. aureus (15.3\%). Three animals were co-colonized with two different isolates, resulting in 48 S. aureus isolates in total. Positive animals were found in Germany and the Czech Republic in each studied year. The S. aureus isolates belonged to ten different spa types, which grouped into six lineages (clonal complex (CC) 49, CC88, CC130, CC1956, sequence type (ST) 890, ST3033). CC49 isolates were most abundant (17/48, 35.4\%), followed by CC1956 (14/48, 29.2\%) and ST890 (9/48, 18.8\%). The wild animal isolates lacked certain properties that are common among human isolates, e.g., a phage-encoded immune evasion cluster, superantigen genes on mobile genetic elements and antibiotic resistance genes, which suggests long-term adaptation to the wild animal host. One CC130 isolate contained the mecC gene, implying wild rodents might be both reservoir and vector for methicillin-resistant. In conclusion, we demonstrated that wild rodents and shrews are naturally colonized with S. aureus, and that those S. aureus isolates show signs of host adaptation.}, language = {en} } @article{GluecklerHerzschuhKruseetal.2021, author = {Gl{\"u}ckler, Ramesh and Herzschuh, Ulrike and Kruse, Stefan and Andreev, Andrei and Vyse, Stuart Andrew and Winkler, Bettina and Biskaborn, Boris and Pestryakova, Luidmila Agafyevna and Dietze, Elisabeth}, title = {Wildfire history of the boreal forest of south-western Yakutia (Siberia) over the last two millennia documented by a lake-sediment charcoal record}, series = {Biogeosciences : BG / European Geosciences Union}, volume = {18}, journal = {Biogeosciences : BG / European Geosciences Union}, number = {13}, publisher = {Copernicus}, address = {G{\"o}ttingen}, issn = {1726-4170}, doi = {10.5194/bg-18-4185-2021}, pages = {4185 -- 4209}, year = {2021}, abstract = {Wildfires, as a key disturbance in forest ecosystems, are shaping the world's boreal landscapes. Changes in fire regimes are closely linked to a wide array of environmental factors, such as vegetation composition, climate change, and human activity. Arctic and boreal regions and, in particular, Siberian boreal forests are experiencing rising air and ground temperatures with the subsequent degradation of permafrost soils leading to shifts in tree cover and species composition. Compared to the boreal zones of North America or Europe, little is known about how such environmental changes might influence long-term fire regimes in Russia. The larch-dominated eastern Siberian deciduous boreal forests differ markedly from the composition of other boreal forests, yet data about past fire regimes remain sparse. Here, we present a high-resolution macroscopic charcoal record from lacustrine sediments of Lake Khamra (southwest Yakutia, Siberia) spanning the last ca. 2200 years, including information about charcoal particle sizes and morphotypes. Our results reveal a phase of increased charcoal accumulation between 600 and 900 CE, indicative of relatively high amounts of burnt biomass and high fire frequencies. This is followed by an almost 900-year-long period of low charcoal accumulation without significant peaks likely corresponding to cooler climate conditions. After 1750 CE fire frequencies and the relative amount of biomass burnt start to increase again, coinciding with a warming climate and increased anthropogenic land development after Russian colonization. In the 20th century, total charcoal accumulation decreases again to very low levels despite higher fire frequency, potentially reflecting a change in fire management strategies and/or a shift of the fire regime towards more frequent but smaller fires. A similar pattern for different charcoal morphotypes and comparison to a pollen and non-pollen palynomorph (NPP) record from the same sediment core indicate that broad-scale changes in vegetation composition were probably not a major driver of recorded fire regime changes. Instead, the fire regime of the last two millennia at Lake Khamra seems to be controlled mainly by a combination of short-term climate variability and anthropogenic fire ignition and suppression.}, language = {en} }