@unpublished{AntonioukKiselevStepanenkoetal.2012, author = {Antoniouk, Alexandra Viktorivna and Kiselev, Oleg and Stepanenko, Vitaly and Tarkhanov, Nikolai Nikolaevich}, title = {Asymptotic solutions of the Dirichlet problem for the heat equation at a characteristic point}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-61987}, year = {2012}, abstract = {The Dirichlet problem for the heat equation in a bounded domain is characteristic, for there are boundary points at which the boundary touches a characteristic hyperplane t = c, c being a constant. It was I.G. Petrovskii (1934) who first found necessary and sufficient conditions on the boundary which guarantee that the solution is continuous up to the characteristic point, provided that the Dirichlet data are continuous. This paper initiated standing interest in studying general boundary value problems for parabolic equations in bounded domains. We contribute to the study by constructing a formal solution of the Dirichlet problem for the heat equation in a neighbourhood of a characteristic boundary point and showing its asymptotic character.}, language = {en} } @unpublished{AlsaedyTarkhanov2012, author = {Alsaedy, Ammar and Tarkhanov, Nikolai Nikolaevich}, title = {The method of Fischer-Riesz equations for elliptic boundary value problems}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-61792}, year = {2012}, abstract = {We develop the method of Fischer-Riesz equations for general boundary value problems elliptic in the sense of Douglis-Nirenberg. To this end we reduce them to a boundary problem for a (possibly overdetermined) first order system whose classical symbol has a left inverse. For such a problem there is a uniquely determined boundary value problem which is adjoint to the given one with respect to the Green formula. On using a well elaborated theory of approximation by solutions of the adjoint problem, we find the Cauchy data of solutions of our problem.}, language = {en} } @unpublished{AlsaedyTarkhanov2015, author = {Alsaedy, Ammar and Tarkhanov, Nikolai Nikolaevich}, title = {Weak boundary values of solutions of Lagrangian problems}, volume = {4}, number = {2}, publisher = {Universit{\"a}tsverlag Potsdam}, address = {Potsdam}, issn = {2193-6943}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-72617}, pages = {24}, year = {2015}, abstract = {We define weak boundary values of solutions to those nonlinear differential equations which appear as Euler-Lagrange equations of variational problems. As a result we initiate the theory of Lagrangian boundary value problems in spaces of appropriate smoothness. We also analyse if the concept of mapping degree of current importance applies to the study of Lagrangian problems.}, language = {en} } @unpublished{AlsaedyTarkhanov2012, author = {Alsaedy, Ammar and Tarkhanov, Nikolai Nikolaevich}, title = {Spectral projection for the dbar-Neumann problem}, issn = {2193-6943}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-58616}, year = {2012}, abstract = {We show that the spectral kernel function of the dbar-Neumann problem on a non-compact strongly pseudoconvex manifold is smooth up to the boundary.}, language = {en} } @unpublished{AlsaedyTarkhanov2016, author = {Alsaedy, Ammar and Tarkhanov, Nikolai Nikolaevich}, title = {A Hilbert boundary value problem for generalised Cauchy-Riemann equations}, volume = {5}, number = {1}, publisher = {Universit{\"a}tsverlag Potsdam}, address = {Potsdam}, issn = {2193-6943}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-86109}, pages = {21}, year = {2016}, abstract = {We elaborate a boundary Fourier method for studying an analogue of the Hilbert problem for analytic functions within the framework of generalised Cauchy-Riemann equations. The boundary value problem need not satisfy the Shapiro-Lopatinskij condition and so it fails to be Fredholm in Sobolev spaces. We show a solvability condition of the Hilbert problem, which looks like those for ill-posed problems, and construct an explicit formula for approximate solutions.}, language = {en} } @unpublished{Alsaedy2016, author = {Alsaedy, Ammar}, title = {Variational primitive of a differential form}, volume = {5}, number = {4}, publisher = {Universit{\"a}tsverlag Potsdam}, address = {Potsdam}, issn = {2193-6943}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-89223}, pages = {8}, year = {2016}, abstract = {In this paper we specify the Dirichlet to Neumann operator related to the Cauchy problem for the gradient operator with data on a part of the boundary. To this end, we consider a nonlinear relaxation of this problem which is a mixed boundary problem of Zaremba type for the p-Laplace equation.}, language = {en} } @unpublished{AizenbergTarkhanov2014, author = {Aizenberg, Lev A. and Tarkhanov, Nikolai Nikolaevich}, title = {An integral formula for the number of lattice points in a domain}, volume = {3}, number = {3}, publisher = {Universit{\"a}tsverlag Potsdam}, address = {Potsdam}, issn = {2193-6943}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-70453}, pages = {7}, year = {2014}, abstract = {Using the multidimensional logarithmic residue we show a simple formula for the difference between the number of integer points in a bounded domain of R^n and the volume of this domain. The difference proves to be the integral of an explicit differential form over the boundary of the domain.}, language = {en} }