@techreport{MatthewesVentura2022, type = {Working Paper}, author = {Matthewes, S{\"o}nke Hendrik and Ventura, Guglielmo}, title = {On Track to Success?}, series = {CEPA Discussion Papers}, journal = {CEPA Discussion Papers}, number = {58}, issn = {2628-653X}, doi = {10.25932/publishup-56725}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-567253}, pages = {70}, year = {2022}, abstract = {Many countries consider expanding vocational curricula in secondary education to boost skills and labour market outcomes among non-university-bound students. However, critics fear this could divert other students from more profitable academic education. We study labour market returns to vocational education in England, where until recently students chose between a vocational track, an academic track and quitting education at age 16. Identification is challenging because self-selection is strong and because students' next-best alternatives are unknown. Against this back- drop, we leverage multiple instrumental variables to estimate margin-specific treatment effects, i.e., causal returns to vocational education for students at the margin with academic education and, separately, for students at the margin with quitting education. Identification comes from variation in distance to the nearest vocational provider conditional on distance to the nearest academic provider (and vice-versa), while controlling for granular student, school and neighbourhood characteristics. The analysis is based on population-wide administrative education data linked to tax records. We find that the vast majority of marginal vocational students are indifferent be- tween vocational and academic education. For them, vocational enrolment substantially decreases earnings at age 30. This earnings penalty grows with age and is due to wages, not employment. However, consistent with comparative advantage, the penalty is smaller for students with higher revealed preferences for the vocational track. For the few students at the margin with no further education, we find merely tentative evidence of increased employment and earnings from vocational enrolment.}, language = {en} } @article{Mawa2020, author = {Mawa, Michael}, title = {The Sustainability Mechanisms for Higher Education Quality Assurance Training in Uganda}, series = {Potsdamer Beitr{\"a}ge zur Hochschulforschung}, journal = {Potsdamer Beitr{\"a}ge zur Hochschulforschung}, number = {5}, publisher = {Universit{\"a}tsverlag Potsdam}, address = {Potsdam}, isbn = {978-3-86956-496-8}, issn = {2192-1075}, doi = {10.25932/publishup-49393}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-493931}, pages = {205 -- 223}, year = {2020}, abstract = {The paper investigates the question of sustainability of capacity building initiatives by reporting about the multiplication training in the frame of DIES NMT Programme on quality assurance in Uganda and how it could make use of the social capital within the existing quality assurance network to sustain and address challenges during its implementation. The purpose of the article is to explore the nature of networking (social and institutional) which was established by the Ugandan Universities Quality Assurance Forum (UUQAF) and share the strategies used in this training experience for future sustainable capacity building training initiatives in emerging economies. The paper employed a qualitative research method to describe and analyse the training framework based on primary and secondary documents.}, language = {en} } @phdthesis{Mazzanti2022, author = {Mazzanti, Stefano}, title = {Novel photocatalytic processes mediated by carbon nitride photocatalysis}, doi = {10.25932/publishup-54209}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-542099}, school = {Universit{\"a}t Potsdam}, pages = {418}, year = {2022}, abstract = {The key to reduce the energy required for specific transformations in a selective manner is the employment of a catalyst, a very small molecular platform that decides which type of energy to use. The field of photocatalysis exploits light energy to shape one type of molecules into others, more valuable and useful. However, many challenges arise in this field, for example, catalysts employed usually are based on metal derivatives, which abundance is limited, they cannot be recycled and are expensive. Therefore, carbon nitrides materials are used in this work to expand horizons in the field of photocatalysis. Carbon nitrides are organic materials, which can act as recyclable, cheap, non-toxic, heterogeneous photocatalysts. In this thesis, they have been exploited for the development of new catalytic methods, and shaped to develop new types of processes. Indeed, they enabled the creation of a new photocatalytic synthetic strategy, the dichloromethylation of enones by dichloromethyl radical generated in situ from chloroform, a novel route for the making of building blocks to be used for the productions of active pharmaceutical compounds. Then, the ductility of these materials allowed to shape carbon nitride into coating for lab vials, EPR capillaries, and a cell of a flow reactor showing the great potential of such flexible technology in photocatalysis. Afterwards, their ability to store charges has been exploited in the reduction of organic substrates under dark conditions, gaining new insights regarding multisite proton coupled electron transfer processes. Furthermore, the combination of carbon nitrides with flavins allowed the development of composite materials with improved photocatalytic activity in the CO2 photoreduction. Concluding, carbon nitrides are a versatile class of photoactive materials, which may help to unveil further scientific discoveries and to develop a more sustainable future.}, language = {en} } @phdthesis{MbayaMani2017, author = {Mbaya Mani, Christian}, title = {Functional nanoporous carbon-based materials derived from oxocarbon-metal coordination complexes}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-407866}, school = {Universit{\"a}t Potsdam}, pages = {IV, 135}, year = {2017}, abstract = {Nanoporous carbon based materials are of particular interest for both science and industry due to their exceptional properties such as a large surface area, high pore volume, high electroconductivity as well as high chemical and thermal stability. Benefiting from these advantageous properties, nanoporous carbons proved to be useful in various energy and environment related applications including energy storage and conversion, catalysis, gas sorption and separation technologies. The synthesis of nanoporous carbons classically involves thermal carbonization of the carbon precursors (e.g. phenolic resins, polyacrylonitrile, poly(vinyl alcohol) etc.) followed by an activation step and/or it makes use of classical hard or soft templates to obtain well-defined porous structures. However, these synthesis strategies are complicated and costly; and make use of hazardous chemicals, hindering their application for large-scale production. Furthermore, control over the carbon materials properties is challenging owing to the relatively unpredictable processes at the high carbonization temperatures. In the present thesis, nanoporous carbon based materials are prepared by the direct heat treatment of crystalline precursor materials with pre-defined properties. This synthesis strategy does not require any additional carbon sources or classical hard- or soft templates. The highly stable and porous crystalline precursors are based on coordination compounds of the squarate and croconate ions with various divalent metal ions including Zn2+, Cu2+, Ni2+, and Co2+, respectively. Here, the structural properties of the crystals can be controlled by the choice of appropriate synthesis conditions such as the crystal aging temperature, the ligand/metal molar ratio, the metal ion, and the organic ligand system. In this context, the coordination of the squarate ions to Zn2+ yields porous 3D cube crystalline particles. The morphology of the cubes can be tuned from densely packed cubes with a smooth surface to cubes with intriguing micrometer-sized openings and voids which evolve on the centers of the low index faces as the crystal aging temperature is raised. By varying the molar ratio, the particle shape can be changed from truncated cubes to perfect cubes with right-angled edges. These crystalline precursors can be easily transformed into the respective carbon based materials by heat treatment at elevated temperatures in a nitrogen atmosphere followed by a facile washing step. The resulting carbons are obtained in good yields and possess a hierarchical pore structure with well-organized and interconnected micro-, meso- and macropores. Moreover, high surface areas and large pore volumes of up to 1957 m2 g-1 and 2.31 cm3 g-1 are achieved, respectively, whereby the macroscopic structure of the precursors is preserved throughout the whole synthesis procedure. Owing to these advantageous properties, the resulting carbon based materials represent promising supercapacitor electrode materials for energy storage applications. This is exemplarily demonstrated by employing the 3D hierarchical porous carbon cubes derived from squarate-zinc coordination compounds as electrode material showing a specific capacitance of 133 F g-1 in H2SO4 at a scan rate of 5 mV s-1 and retaining 67\% of this specific capacitance when the scan rate is increased to 200 mV s-1. In a further application, the porous carbon cubes derived from squarate-zinc coordination compounds are used as high surface area support material and decorated with nickel nanoparticles via an incipient wetness impregnation. The resulting composite material combines a high surface area, a hierarchical pore structure with high functionality and well-accessible pores. Moreover, owing to their regular micro-cube shape, they allow for a good packing of a fixed-bed flow reactor along with high column efficiency and a minimized pressure drop throughout the packed reactor. Therefore, the composite is employed as heterogeneous catalyst in the selective hydrogenation of 5-hydroxymethylfurfural to 2,5-dimethylfuran showing good catalytic performance and overcoming the conventional problem of column blocking. Thinking about the rational design of 3D carbon geometries, the functions and properties of the resulting carbon-based materials can be further expanded by the rational introduction of heteroatoms (e.g. N, B, S, P, etc.) into the carbon structures in order to alter properties such as wettability, surface polarity as well as the electrochemical landscape. In this context, the use of crystalline materials based on oxocarbon-metal ion complexes can open a platform of highly functional materials for all processes that involve surface processes.}, language = {en} } @phdthesis{Meessen2019, author = {Meeßen, Christian}, title = {The thermal and rheological state of the Northern Argentinian foreland basins}, doi = {10.25932/publishup-43994}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-439945}, school = {Universit{\"a}t Potsdam}, pages = {xviii, 151}, year = {2019}, abstract = {The foreland of the Andes in South America is characterised by distinct along strike changes in surface deformational styles. These styles are classified into two end-members, the thin-skinned and the thick-skinned style. The superficial expression of thin-skinned deformation is a succession of narrowly spaced hills and valleys, that form laterally continuous ranges on the foreland facing side of the orogen. Each of the hills is defined by a reverse fault that roots in a basal d{\´e}collement surface within the sedimentary cover, and acted as thrusting ramp to stack the sedimentary pile. Thick-skinned deformation is morphologically characterised by spatially disparate, basement-cored mountain ranges. These mountain ranges are uplifted along reactivated high-angle crustal-scale discontinuities, such as suture zones between different tectonic terranes. Amongst proposed causes for the observed variation are variations in the dip angle of the Nazca plate, variation in sediment thickness, lithospheric thickening, volcanism or compositional differences. The proposed mechanisms are predominantly based on geological observations or numerical thermomechanical modelling, but there has been no attempt to understand the mechanisms from a point of data-integrative 3D modelling. The aim of this dissertation is therefore to understand how lithospheric structure controls the deformational behaviour. The integration of independent data into a consistent model of the lithosphere allows to obtain additional evidence that helps to understand the causes for the different deformational styles. Northern Argentina encompasses the transition from the thin-skinned fold-and-thrust belt in Bolivia, to the thick-skinned Sierras Pampeanas province, which makes this area a well suited location for such a study. The general workflow followed in this study first involves data-constrained structural- and density-modelling in order to obtain a model of the study area. This model was then used to predict the steady-state thermal field, which was then used to assess the present-day rheological state in northern Argentina. The structural configuration of the lithosphere in northern Argentina was determined by means of data-integrative, 3D density modelling verified by Bouguer gravity. The model delineates the first-order density contrasts in the lithosphere in the uppermost 200 km, and discriminates bodies for the sediments, the crystalline crust, the lithospheric mantle and the subducting Nazca plate. To obtain the intra-crustal density structure, an automated inversion approach was developed and applied to a starting structural model that assumed a homogeneously dense crust. The resulting final structural model indicates that the crustal structure can be represented by an upper crust with a density of 2800 kg/m³, and a lower crust of 3100 kg/m³. The Transbrazilian Lineament, which separates the Pampia terrane from the R{\´i}o de la Plata craton, is expressed as a zone of low average crustal densities. In an excursion, we demonstrate in another study, that the gravity inversion method developed to obtain intra-crustal density structures, is also applicable to obtain density variations in the uppermost lithospheric mantle. Densities in such sub-crustal depths are difficult to constrain from seismic tomographic models due to smearing of crustal velocities. With the application to the uppermost lithospheric mantle in the north Atlantic, we demonstrate in Tan et al. (2018) that lateral density trends of at least 125\,km width are robustly recovered by the inversion method, thereby providing an important tool for the delineation of subcrustal density trends. Due to the genetic link between subduction, orogenesis and retroarc foreland basins the question rises whether the steady-state assumption is valid in such a dynamic setting. To answer this question, I analysed (i) the impact of subduction on the conductive thermal field of the overlying continental plate, (ii) the differences between the transient and steady-state thermal fields of a geodynamic coupled model. Both studies indicate that the assumption of a thermal steady-state is applicable in most parts of the study area. Within the orogenic wedge, where the assumption cannot be applied, I estimated the transient thermal field based on the results of the conducted analyses. Accordingly, the structural model that had been obtained in the first step, could be used to obtain a 3D conductive steady-state thermal field. The rheological assessment based on this thermal field indicates that the lithosphere of the thin-skinned Subandean ranges is characterised by a relatively strong crust and a weak mantle. Contrarily, the adjacent foreland basin consists of a fully coupled, very strong lithosphere. Thus, shortening in northern Argentina can only be accommodated within the weak lithosphere of the orogen and the Subandean ranges. The analysis suggests that the d{\´e}collements of the fold-and-thrust belt are the shallow continuation of shear zones that reside in the ductile sections of the orogenic crust. Furthermore, the localisation of the faults that provide strain transfer between the deeper ductile crust and the shallower d{\´e}collement is strongly influenced by crustal weak zones such as foliation. In contrast to the northern foreland, the lithosphere of the thick-skinned Sierras Pampeanas is fully coupled and characterised by a strong crust and mantle. The high overall strength prevents the generation of crustal-scale faults by tectonic stresses. Even inherited crustal-scale discontinuities, such as sutures, cannot sufficiently reduce the strength of the lithosphere in order to be reactivated. Therefore, magmatism that had been identified to be a precursor of basement uplift in the Sierras Pampeanas, is the key factor that leads to the broken foreland of this province. Due to thermal weakening, and potentially lubrication of the inherited discontinuities, the lithosphere is locally weakened such that tectonic stresses can uplift the basement blocks. This hypothesis explains both the spatially disparate character of the broken foreland, as well as the observed temporal delay between volcanism and basement block uplift. This dissertation provides for the first time a data-driven 3D model that is consistent with geophysical data and geological observations, and that is able to causally link the thermo-rheological structure of the lithosphere to the observed variation of surface deformation styles in the retroarc foreland of northern Argentina.}, language = {en} } @phdthesis{Mester2023, author = {Mester, Benedikt}, title = {Modeling flood-induced human displacement risk under global change}, doi = {10.25932/publishup-60929}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-609293}, school = {Universit{\"a}t Potsdam}, pages = {XVI, 143}, year = {2023}, abstract = {Extreme flooding displaces an average of 12 million people every year. Marginalized populations in low-income countries are in particular at high risk, but also industrialized countries are susceptible to displacement and its inherent societal impacts. The risk of being displaced results from a complex interaction of flood hazard, population exposed in the floodplains, and socio-economic vulnerability. Ongoing global warming changes the intensity, frequency, and duration of flood hazards, undermining existing protection measures. Meanwhile, settlements in attractive yet hazardous flood-prone areas have led to a higher degree of population exposure. Finally, the vulnerability to displacement is altered by demographic and social change, shifting economic power, urbanization, and technological development. These risk components have been investigated intensively in the context of loss of life and economic damage, however, only little is known about the risk of displacement under global change. This thesis aims to improve our understanding of flood-induced displacement risk under global climate change and socio-economic change. This objective is tackled by addressing the following three research questions. First, by focusing on the choice of input data, how well can a global flood modeling chain reproduce flood hazards of historic events that lead to displacement? Second, what are the socio-economic characteristics that shape the vulnerability to displacement? Finally, to what degree has climate change potentially contributed to recent flood-induced displacement events? To answer the first question, a global flood modeling chain is evaluated by comparing simulated flood extent with satellite-derived inundation information for eight major flood events. A focus is set on the sensitivity to different combinations of the underlying climate reanalysis datasets and global hydrological models which serve as an input for the global hydraulic model. An evaluation scheme of performance scores shows that simulated flood extent is mostly overestimated without the consideration of flood protection and only for a few events dependent on the choice of global hydrological models. Results are more sensitive to the underlying climate forcing, with two datasets differing substantially from a third one. In contrast, the incorporation of flood protection standards results in an underestimation of flood extent, pointing to potential deficiencies in the protection level estimates or the flood frequency distribution within the modeling chain. Following the analysis of a physical flood hazard model, the socio-economic drivers of vulnerability to displacement are investigated in the next step. For this purpose, a satellite- based, global collection of flood footprints is linked with two disaster inventories to match societal impacts with the corresponding flood hazard. For each event the number of affected population, assets, and critical infrastructure, as well as socio-economic indicators are computed. The resulting datasets are made publicly available and contain 335 displacement events and 695 mortality/damage events. Based on this new data product, event-specific displacement vulnerabilities are determined and multiple (national) dependencies with the socio-economic predictors are derived. The results suggest that economic prosperity only partially shapes vulnerability to displacement; urbanization, infant mortality rate, the share of elderly, population density and critical infrastructure exhibit a stronger functional relationship, suggesting that higher levels of development are generally associated with lower vulnerability. Besides examining the contextual drivers of vulnerability, the role of climate change in the context of human displacement is also being explored. An impact attribution approach is applied on the example of Cyclone Idai and associated extreme coastal flooding in Mozambique. A combination of coastal flood modeling and satellite imagery is used to construct factual and counterfactual flood events. This storyline-type attribution method allows investigating the isolated or combined effects of sea level rise and the intensification of cyclone wind speeds on coastal flooding. The results suggest that displacement risk has increased by 3.1 to 3.5\% due to the total effects of climate change on coastal flooding, with the effects of increasing wind speed being the dominant factor. In conclusion, this thesis highlights the potentials and challenges of modeling flood- induced displacement risk. While this work explores the sensitivity of global flood modeling to the choice of input data, new questions arise on how to effectively improve the reproduction of flood return periods and the representation of protection levels. It is also demonstrated that disentangling displacement vulnerabilities is feasible, with the results providing useful information for risk assessments, effective humanitarian aid, and disaster relief. The impact attribution study is a first step in assessing the effects of global warming on displacement risk, leading to new research challenges, e.g., coupling fluvial and coastal flood models or the attribution of other hazard types and displacement events. This thesis is one of the first to address flood-induced displacement risk from a global perspective. The findings motivate for further development of the global flood modeling chain to improve our understanding of displacement vulnerability and the effects of global warming.}, language = {en} } @phdthesis{Metz2023, author = {Metz, Malte}, title = {Finite fault earthquake source inversions}, doi = {10.25932/publishup-61974}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-619745}, school = {Universit{\"a}t Potsdam}, pages = {143}, year = {2023}, abstract = {Earthquake modeling is the key to a profound understanding of a rupture. Its kinematics or dynamics are derived from advanced rupture models that allow, for example, to reconstruct the direction and velocity of the rupture front or the evolving slip distribution behind the rupture front. Such models are often parameterized by a lattice of interacting sub-faults with many degrees of freedom, where, for example, the time history of the slip and rake on each sub-fault are inverted. To avoid overfitting or other numerical instabilities during a finite-fault estimation, most models are stabilized by geometric rather than physical constraints such as smoothing. As a basis for the inversion approach of this study, we build on a new pseudo-dynamic rupture model (PDR) with only a few free parameters and a simple geometry as a physics-based solution of an earthquake rupture. The PDR derives the instantaneous slip from a given stress drop on the fault plane, with boundary conditions on the developing crack surface guaranteed at all times via a boundary element approach. As a side product, the source time function on each point on the rupture plane is not constraint and develops by itself without additional parametrization. The code was made publicly available as part of the Pyrocko and Grond Python packages. The approach was compared with conventional modeling for different earthquakes. For example, for the Mw 7.1 2016 Kumamoto, Japan, earthquake, the effects of geometric changes in the rupture surface on the slip and slip rate distributions could be reproduced by simply projecting stress vectors. For the Mw 7.5 2018 Palu, Indonesia, strike-slip earthquake, we also modelled rupture propagation using the 2D Eikonal equation and assuming a linear relationship between rupture and shear wave velocity. This allowed us to give a deeper and faster propagating rupture front and the resulting upward refraction as a new possible explanation for the apparent supershear observed at the Earth's surface. The thesis investigates three aspects of earthquake inversion using PDR: (1) to test whether implementing a simplified rupture model with few parameters into a probabilistic Bayesian scheme without constraining geometric parameters is feasible, and whether this leads to fast and robust results that can be used for subsequent fast information systems (e.g., ground motion predictions). (2) To investigate whether combining broadband and strong-motion seismic records together with near-field ground deformation data improves the reliability of estimated rupture models in a Bayesian inversion. (3) To investigate whether a complex rupture can be represented by the inversion of multiple PDR sources and for what type of earthquakes this is recommended. I developed the PDR inversion approach and applied the joint data inversions to two seismic sequences in different tectonic settings. Using multiple frequency bands and a multiple source inversion approach, I captured the multi-modal behaviour of the Mw 8.2 2021 South Sandwich subduction earthquake with a large, curved and slow rupturing shallow earthquake bounded by two faster and deeper smaller events. I could cross-validate the results with other methods, i.e., P-wave energy back-projection, a clustering analysis of aftershocks and a simple tsunami forward model. The joint analysis of ground deformation and seismic data within a multiple source inversion also shed light on an earthquake triplet, which occurred in July 2022 in SE Iran. From the inversion and aftershock relocalization, I found indications for a vertical separation between the shallower mainshocks within the sedimentary cover and deeper aftershocks at the sediment-basement interface. The vertical offset could be caused by the ductile response of the evident salt layer to stress perturbations from the mainshocks. The applications highlight the versatility of the simple PDR in probabilistic seismic source inversion capturing features of rather different, complex earthquakes. Limitations, as the evident focus on the major slip patches of the rupture are discussed as well as differences to other finite fault modeling methods.}, language = {en} } @article{Meyer2005, author = {Meyer, Roland}, title = {VP-fronting in Czech and Polish}, series = {Interdisciplinary studies on information structure : ISIS ; working papers of the SFB 632}, journal = {Interdisciplinary studies on information structure : ISIS ; working papers of the SFB 632}, number = {2}, issn = {1866-4725}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-8662}, pages = {87 -- 115}, year = {2005}, abstract = {Fronting of an infinite VP across a finite main verb-akin to German "VP-topicalization"-can be found also in Czech and Polish. The paper discusses evidence from large corpora for this process and some of its properties, both syntactic and information-structural. Based on this case, criteria for more user-friedly searching and retrieval of corpus data in syntactic research are being developed.}, language = {en} } @phdthesis{MichalikOnichimowska2022, author = {Michalik-Onichimowska, Aleksandra}, title = {Real-time monitoring of (photo)chemical reactions in micro flow reactors and levitated droplets by IR-MALDI ion mobility and mass spectrometry}, doi = {10.25932/publishup-55729}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-557298}, school = {Universit{\"a}t Potsdam}, pages = {v, 68}, year = {2022}, abstract = {Eine nachhaltigere chemische Industrie erfordert eine Minimierung der L{\"o}sungsmittel und Chemikalien. Daher werden Optimierung und Entwicklung chemischer Prozesse vor einer Produktion in großem Maßstab in kleinen Chargen durchgef{\"u}hrt. Der entscheidende Schritt bei diesem Ansatz ist die Skalierbarkeit von kleinen Reaktionssystemen auf große, kosteneffiziente Reaktoren. Die Vergr{\"o}ßerung des Volumens des Reaktionsmediums geht immer mit der Vergr{\"o}ßerung der Oberfl{\"a}che einher, die mit dem begrenzenden Gef{\"a}ß in Kontakt steht. Da das Volumen kubisch, w{\"a}hrend die Oberfl{\"a}che quadratisch mit zunehmendem Radius skaliert, nimmt ihr Verh{\"a}ltnis nicht linear zu. Viele an der Grenzfl{\"a}che zwischen Oberfl{\"a}che und Fl{\"u}ssigkeit auftretende Ph{\"a}nomene k{\"o}nnen die Reaktionsgeschwindigkeiten und Ausbeuten beeinflussen, was zu falschen Prognosen aufgrund der kleinskaligen Optimierung f{\"u}hrt. Die Anwendung von schwebenden Tropfen als beh{\"a}lterlose Reaktionsgef{\"a}ße bietet eine vielversprechende M{\"o}glichkeit, die oben genannten Probleme zu vermeiden. In der vorgestellten Arbeit wurde eine effiziente Kopplung von akustisch schwebenden Tropfen und IM Spektrometer f{\"u}r die Echtzeit{\"u}berwachung chemischer Reaktionen entwickelt, bei denen akustisch schwebende Tropfen als Reaktionsgef{\"a}ße fungieren. Das Design des Systems umfasst die ber{\"u}hrungslose Probenahme und Ionisierung, die durch Laserdesorption und -ionisation bei 2,94 µm realisiert wird. Der Umfang der Arbeit umfasst grundlegende Studien zum Verst{\"a}ndnis der Laserbestrahlung von Tropfen im akustischen Feld. Das Verst{\"a}ndnis dieses Ph{\"a}nomens ist entscheidend, um den Effekt der zeitlichen und r{\"a}umlichen Aufl{\"o}sung der erzeugten Ionenwolke zu verstehen, die die Aufl{\"o}sung des Systems beeinflusst. Der Aufbau umfasst eine akustische Falle, Laserbestrahlung und elektrostatische Linsen, die bei hoher Spannung unter Umgebungsdruck arbeiten. Ein effektiver Ionentransfer im Grenzfl{\"a}chenbereich zwischen dem schwebenden Tropfen und dem IMS muss daher elektrostatische und akustische Felder vollst{\"a}ndig ber{\"u}cksichtigen. F{\"u}r die Probenahme und Ionisation wurden zwei unterschiedliche Laserpulsl{\"a}ngen untersucht, n{\"a}mlich im ns- und µs-Bereich. Die Bestrahlung {\"u}ber µs-Laserpulse bietet gegen{\"u}ber ns-Pulse mehrere Vorteile: i) das Tropfenvolumen wird nicht stark beeinflusst, was es erm{\"o}glichet, nur ein kleines Volumen des Tropfens abzutasten; ii) die geringere Fluenz f{\"u}hrt zu weniger ausgepr{\"a}gten Schwingungen des im akustischen Feld eingeschlossenen Tropfens und der Tropfen wird nicht aus dem akustischen Feld r{\"u}ckgeschlagen, was zum Verlust der Probe f{\"u}hren w{\"u}rde; iii) die milde Laserbestrahlung f{\"u}hrt zu einer besseren r{\"a}umlichen und zeitlichen Begrenzung der Ionenwolken, was zu einer besseren Aufl{\"o}sung der detektierten Ionenpakete f{\"u}hrt. Schließlich erm{\"o}glicht dieses Wissen die Anwendung der Ionenoptik, die erforderlich ist, um den Ionenfluss zwischen dem im akustischen Feld suspendierten Tropfen und dem IM Spektrometer zu induzieren. Die Ionenoptik aus 2 elektrostatischen Linsen in der N{\"a}he des Tropfens erm{\"o}glicht es, die Ionenwolke effektiv zu fokussieren und direkt zum IM Spektrometer-Eingang zu f{\"u}hren. Diese neuartige Kopplung hat sich beim Nachweis einiger basischer Molek{\"u}le als erfolgreich erwiesen. Um die Anwendbarkeit des Systems zu belegen, wurde die Reaktion zwischen N-Boc Cysteine Methylester und Allylalkohol in einem Chargenreaktor durchgef{\"u}hrt und online {\"u}berwacht. F{\"u}r eine Kalibrierung wurde der Reaktionsfortschritt parallel mittels 1H-NMR verfolgt. Der beobachtete Reaktionsumsatz von mehr als 50\% innerhalb der ersten 20 Minuten demonstrierte die Eignung der Reaktion, um die Einsatzpotentiale des entwickelten Systems zu bewerten.}, language = {en} } @article{MientusHumeWulffetal.2022, author = {Mientus, Lukas and Hume, Anne and Wulff, Peter and Meiners, Antoinette and Borowski, Andreas}, title = {Modelling STEM teachers' pedagogical content knowledge in the framework of the refined consensus model}, series = {Education Sciences : open access journal}, volume = {12}, journal = {Education Sciences : open access journal}, edition = {6}, publisher = {MDPI}, address = {Basel, Schweiz}, issn = {2227-7102}, doi = {10.3390/educsci12060385}, pages = {1 -- 25}, year = {2022}, abstract = {Science education researchers have developed a refined understanding of the structure of science teachers' pedagogical content knowledge (PCK), but how to develop applicable and situation-adequate PCK remains largely unclear. A potential problem lies in the diverse conceptualisations of the PCK used in PCK research. This study sought to systematize existing science education research on PCK through the lens of the recently proposed refined consensus model (RCM) of PCK. In this review, the studies' approaches to investigating PCK and selected findings were characterised and synthesised as an overview comparing research before and after the publication of the RCM. We found that the studies largely employed a qualitative case-study methodology that included specific PCK models and tools. However, in recent years, the studies focused increasingly on quantitative aspects. Furthermore, results of the reviewed studies can mostly be integrated into the RCM. We argue that the RCM can function as a meaningful theoretical lens for conceptualizing links between teaching practice and PCK development by proposing pedagogical reasoning as a mechanism and/or explanation for PCK development in the context of teaching practice.}, language = {en} } @article{MiklashevskyFischerLindemann2022, author = {Miklashevsky, Alex and Fischer, Martin H. and Lindemann, Oliver}, title = {Spatial-numerical associations without a motor response? Grip force says 'Yes'}, series = {Acta Psychologica}, volume = {231}, journal = {Acta Psychologica}, publisher = {Elsevier}, address = {Amsterdam}, issn = {1873-6297}, doi = {10.1016/j.actpsy.2022.103791}, pages = {1 -- 17}, year = {2022}, abstract = {In numerical processing, the functional role of Spatial-Numerical Associations (SNAs, such as the association of smaller numbers with left space and larger numbers with right space, the Mental Number Line hypothesis) is debated. Most studies demonstrate SNAs with lateralized responses, and there is little evidence that SNAs appear when no response is required. We recorded passive holding grip forces in no-go trials during number processing. In Experiment 1, participants performed a surface numerical decision task ("Is it a number or a letter?"). In Experiment 2, we used a deeper semantic task ("Is this number larger or smaller than five?"). Despite instruction to keep their grip force constant, participants' spontaneous grip force changed in both experiments: Smaller numbers led to larger force increase in the left than in the right hand in the numerical decision task (500-700 ms after stimulus onset). In the semantic task, smaller numbers again led to larger force increase in the left hand, and larger numbers increased the right-hand holding force. This effect appeared earlier (180 ms) and lasted longer (until 580 ms after stimulus onset). This is the first demonstration of SNAs with passive holding force. Our result suggests that (1) explicit motor response is not a prerequisite for SNAs to appear, and (2) the timing and strength of SNAs are task-dependent. (216 words).}, language = {en} } @inproceedings{MillsHealey2006, author = {Mills, Gregory J. and Healey, Patrick G. T.}, title = {Clarifying spatial descriptions : local and global effects on semantic co-ordination}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-10414}, year = {2006}, abstract = {A key problem for models of dialogue is to explain the mechanisms involved in generating and responding to clarification requests. We report a 'Maze task' experiment that investigates the effect of 'spoof' clarification requests on the development of semantic co-ordination. The results provide evidence of both local and global semantic co-ordination phenomena that are not captured by existing dialogue co-ordination models.}, language = {en} } @misc{MingKlieglShuetal.2010, author = {Ming, Yan and Kliegl, Reinhold and Shu, Hua and Pan, Jinger and Zhou, Xiaolin}, title = {Parafoveal Load of Word N+1 Modulates Preprocessing Effectivenessof Word N+2 in Chinese Reading}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-57103}, year = {2010}, abstract = {Preview benefits (PBs) from two words to the right of the fixated one (i.e., word N+2)and associated parafoveal-on-foveal effects are critical for proposals of distributed lexical processing during reading. This experiment examined parafoveal processing during reading of Chinese sentences, using a boundary manipulation of N+2-word preview with low- and high-frequency words N+1. The main findings were (a) an identity PB for word N+2 that was (b) primarily observed when word N+1 was of high frequency (i.e., an interaction between frequency of word N+1 and PB for word N+2), and (c) a parafoveal-on-foveal frequency effect of word N+1 for fixation durations on word N. We discuss implications for theories of serial attention shifts and parallel distributed processing of words during reading.}, language = {en} } @article{Mitchell2000, author = {Mitchell, Don}, title = {The end of culture?}, series = {Geographische Revue : Zeitschrift f{\"u}r Literatur und Diskussion}, volume = {2}, journal = {Geographische Revue : Zeitschrift f{\"u}r Literatur und Diskussion}, number = {2}, issn = {1438-3039}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-24016}, pages = {3 -- 17}, year = {2000}, abstract = {Content: -"Post-Culture" -Cultural Studies, Geography, and Culturalism -Taking Culture Seriously in the Post-Cultural World -Conclusion}, language = {en} } @phdthesis{Miteva2007, author = {Miteva, Rositsa Stoycheva}, title = {Electron acceleration at localized wave structures in the solar corona}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-14775}, school = {Universit{\"a}t Potsdam}, year = {2007}, abstract = {Our dynamic Sun manifests its activity by different phenomena: from the 11-year cyclic sunspot pattern to the unpredictable and violent explosions in the case of solar flares. During flares, a huge amount of the stored magnetic energy is suddenly released and a substantial part of this energy is carried by the energetic electrons, considered to be the source of the nonthermal radio and X-ray radiation. One of the most important and still open question in solar physics is how the electrons are accelerated up to high energies within (the observed in the radio emission) short time scales. Because the acceleration site is extremely small in spatial extent as well (compared to the solar radius), the electron acceleration is regarded as a local process. The search for localized wave structures in the solar corona that are able to accelerate electrons together with the theoretical and numerical description of the conditions and requirements for this process, is the aim of the dissertation. Two models of electron acceleration in the solar corona are proposed in the dissertation: I. Electron acceleration due to the solar jet interaction with the background coronal plasma (the jet--plasma interaction) A jet is formed when the newly reconnected and highly curved magnetic field lines are relaxed by shooting plasma away from the reconnection site. Such jets, as observed in soft X-rays with the Yohkoh satellite, are spatially and temporally associated with beams of nonthermal electrons (in terms of the so-called type III metric radio bursts) propagating through the corona. A model that attempts to give an explanation for such observational facts is developed here. Initially, the interaction of such jets with the background plasma leads to an (ion-acoustic) instability associated with growing of electrostatic fluctuations in time for certain range of the jet initial velocity. During this process, any test electron that happen to feel this electrostatic wave field is drawn to co-move with the wave, gaining energy from it. When the jet speed has a value greater or lower than the one, required by the instability range, such wave excitation cannot be sustained and the process of electron energization (acceleration and/or heating) ceases. Hence, the electrons can propagate further in the corona and be detected as type III radio burst, for example. II. Electron acceleration due to attached whistler waves in the upstream region of coronal shocks (the electron--whistler--shock interaction) Coronal shocks are also able to accelerate electrons, as observed by the so-called type II metric radio bursts (the radio signature of a shock wave in the corona). From in-situ observations in space, e.g., at shocks related to co-rotating interaction regions, it is known that nonthermal electrons are produced preferably at shocks with attached whistler wave packets in their upstream regions. Motivated by these observations and assuming that the physical processes at shocks are the same in the corona as in the interplanetary medium, a new model of electron acceleration at coronal shocks is presented in the dissertation, where the electrons are accelerated by their interaction with such whistlers. The protons inflowing toward the shock are reflected there by nearly conserving their magnetic moment, so that they get a substantial velocity gain in the case of a quasi-perpendicular shock geometry, i.e, the angle between the shock normal and the upstream magnetic field is in the range 50--80 degrees. The so-accelerated protons are able to excite whistler waves in a certain frequency range in the upstream region. When these whistlers (comprising the localized wave structure in this case) are formed, only the incoming electrons are now able to interact resonantly with them. But only a part of these electrons fulfill the the electron--whistler wave resonance condition. Due to such resonant interaction (i.e., of these electrons with the whistlers), the electrons are accelerated in the electric and magnetic wave field within just several whistler periods. While gaining energy from the whistler wave field, the electrons reach the shock front and, subsequently, a major part of them are reflected back into the upstream region, since the shock accompanied with a jump of the magnetic field acts as a magnetic mirror. Co-moving with the whistlers now, the reflected electrons are out of resonance and hence can propagate undisturbed into the far upstream region, where they are detected in terms of type II metric radio bursts. In summary, the kinetic energy of protons is transfered into electrons by the action of localized wave structures in both cases, i.e., at jets outflowing from the magnetic reconnection site and at shock waves in the corona.}, language = {en} } @inproceedings{Moffat2007, author = {Moffat, Anthony F. J.}, title = {Observational overview of clumping in hot stellar winds}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-17633}, year = {2007}, abstract = {In the old days (pre ∼1990) hot stellar winds were assumed to be smooth, which made life fairly easy and bothered no one. Then after suspicious behaviour had been revealed, e.g. stochastic temporal variability in broadband polarimetry of single hot stars, it took the emerging CCD technology developed in the preceding decades (∼1970-80's) to reveal that these winds were far from smooth. It was mainly high-S/N, time-dependent spectroscopy of strong optical recombination emission lines in WR, and also a few OB and other stars with strong hot winds, that indicated all hot stellar winds likely to be pervaded by thousands of multiscale (compressible supersonic turbulent?) structures, whose driver is probably some kind of radiative instability. Quantitative estimates of clumping-independent mass-loss rates came from various fronts, mainly dependent directly on density (e.g. electron-scattering wings of emission lines, UV spectroscopy of weak resonance lines, and binary-star properties including orbital-period changes, electron-scattering, and X-ray fluxes from colliding winds) rather than the more common, easier-to-obtain but clumping-dependent density-squared diagnostics (e.g. free-free emission in the IR/radio and recombination lines, of which the favourite has always been Hα). Many big questions still remain, such as: What do the clumps really look like? Do clumping properties change as one recedes from the mother star? Is clumping universal? Does the relative clumping correction depend on \$\dot{M}\$ itself?}, language = {en} } @inproceedings{MoffatHillierHamannetal.2007, author = {Moffat, Anthony F. J. and Hillier, D. J. and Hamann, Wolf-Rainer and Owocki, S. P.}, title = {General Discussion}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-17953}, year = {2007}, abstract = {Clumping in hot-star winds : proceedings of an international workshop held in Potsdam, Germany, 18. - 22. June 2007}, language = {en} } @phdthesis{Morgenstern2012, author = {Morgenstern, Anne}, title = {Thermokarst and thermal erosion : degradation of Siberian ice-rich permafrost}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-62079}, school = {Universit{\"a}t Potsdam}, year = {2012}, abstract = {Current climate warming is affecting arctic regions at a faster rate than the rest of the world. This has profound effects on permafrost that underlies most of the arctic land area. Permafrost thawing can lead to the liberation of considerable amounts of greenhouse gases as well as to significant changes in the geomorphology, hydrology, and ecology of the corresponding landscapes, which may in turn act as a positive feedback to the climate system. Vast areas of the east Siberian lowlands, which are underlain by permafrost of the Yedoma-type Ice Complex, are particularly sensitive to climate warming because of the high ice content of these permafrost deposits. Thermokarst and thermal erosion are two major types of permafrost degradation in periglacial landscapes. The associated landforms are prominent indicators of climate-induced environmental variations on the regional scale. Thermokarst lakes and basins (alasses) as well as thermo-erosional valleys are widely distributed in the coastal lowlands adjacent to the Laptev Sea. This thesis investigates the spatial distribution and morphometric properties of these degradational features to reconstruct their evolutionary conditions during the Holocene and to deduce information on the potential impact of future permafrost degradation under the projected climate warming. The methodological approach is a combination of remote sensing, geoinformation, and field investigations, which integrates analyses on local to regional spatial scales. Thermokarst and thermal erosion have affected the study region to a great extent. In the Ice Complex area of the Lena River Delta, thermokarst basins cover a much larger area than do present thermokarst lakes on Yedoma uplands (20.0 and 2.2 \%, respectively), which indicates that the conditions for large-area thermokarst development were more suitable in the past. This is supported by the reconstruction of the development of an individual alas in the Lena River Delta, which reveals a prolonged phase of high thermokarst activity since the Pleistocene/Holocene transition that created a large and deep basin. After the drainage of the primary thermokarst lake during the mid-Holocene, permafrost aggradation and degradation have occurred in parallel and in shorter alternating stages within the alas, resulting in a complex thermokarst landscape. Though more dynamic than during the first phase, late Holocene thermokarst activity in the alas was not capable of degrading large portions of Pleistocene Ice Complex deposits and substantially altering the Yedoma relief. Further thermokarst development in existing alasses is restricted to thin layers of Holocene ice-rich alas sediments, because the Ice Complex deposits underneath the large primary thermokarst lakes have thawed completely and the underlying deposits are ice-poor fluvial sands. Thermokarst processes on undisturbed Yedoma uplands have the highest impact on the alteration of Ice Complex deposits, but will be limited to smaller areal extents in the future because of the reduced availability of large undisturbed upland surfaces with poor drainage. On Kurungnakh Island in the central Lena River Delta, the area of Yedoma uplands available for future thermokarst development amounts to only 33.7 \%. The increasing proximity of newly developing thermokarst lakes on Yedoma uplands to existing degradational features and other topographic lows decreases the possibility for thermokarst lakes to reach large sizes before drainage occurs. Drainage of thermokarst lakes due to thermal erosion is common in the study region, but thermo-erosional valleys also provide water to thermokarst lakes and alasses. Besides these direct hydrological interactions between thermokarst and thermal erosion on the local scale, an interdependence between both processes exists on the regional scale. A regional analysis of extensive networks of thermo-erosional valleys in three lowland regions of the Laptev Sea with a total study area of 5,800 km² found that these features are more common in areas with higher slopes and relief gradients, whereas thermokarst development is more pronounced in flat lowlands with lower relief gradients. The combined results of this thesis highlight the need for comprehensive analyses of both, thermokarst and thermal erosion, in order to assess past and future impacts and feedbacks of the degradation of ice-rich permafrost on hydrology and climate of a certain region.}, language = {en} } @inproceedings{MorrisonRotherKurschat2007, author = {Morrison, N. D. and Rother, R. and Kurschat, N.}, title = {Hα line profile variability in the B8Ia-type supergiant Rigel (β Ori)}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-18120}, year = {2007}, abstract = {Hα observations of Rigel obtained on 184 nights during the past ten years with the 1-m telescope and ´echelle spectrograph of Ritter Observatory are surveyed. The line profiles were classified in terms of morphology. About 1/4 of them are of P Cygni type, about 15\% inverse P Cygni, about 25\% double-peaked, about 1/3 pure absorption, and a few are single emission lines. Transformation of the profile from one type to another typically takes a few days. Although the line stays in absorption for extended intervals, only one high-velocity absorption event of the intensity reported by Kaufer et al. (1996a) was observed, in late 2006. Late in this event, Hα absorption occurred farther to the red than the red wing of a plausible photospheric absorption component, an indication of infalling material. In general, as the absorption events come to an end, the emission typically returns with an inverse P Cygni profile. The Hα profile class shows no obvious correlation with the radial velocity of C II λ6578, a photospheric absorption line.}, language = {en} } @article{MtilatilaBronstertVormoor2022, author = {Mtilatila, Lucy Mphatso Ng'ombe and Bronstert, Axel and Vormoor, Klaus Josef}, title = {Temporal evaluation and projections of meteorological droughts in the Greater Lake Malawi Basin, Southeast Africa}, series = {Frontiers in Water}, journal = {Frontiers in Water}, publisher = {Frontiers Media S.A.}, address = {Lausanne, Schweiz}, issn = {2624-9375}, doi = {10.3389/frwa.2022.1041452}, pages = {1 -- 16}, year = {2022}, abstract = {The study examined the potential future changes of drought characteristics in the Greater Lake Malawi Basin in Southeast Africa. This region strongly depends on water resources to generate electricity and food. Future projections (considering both moderate and high emission scenarios) of temperature and precipitation from an ensemble of 16 bias-corrected climate model combinations were blended with a scenario-neutral response surface approach to analyses changes in: (i) the meteorological conditions, (ii) the meteorological water balance, and (iii) selected drought characteristics such as drought intensity, drought months, and drought events, which were derived from the Standardized Precipitation and Evapotranspiration Index. Changes were analyzed for a near-term (2021-2050) and far-term period (2071-2100) with reference to 1976-2005. The effect of bias-correction (i.e., empirical quantile mapping) on the ability of the climate model ensemble to reproduce observed drought characteristics as compared to raw climate projections was also investigated. Results suggest that the bias-correction improves the climate models in terms of reproducing temperature and precipitation statistics but not drought characteristics. Still, despite the differences in the internal structures and uncertainties that exist among the climate models, they all agree on an increase of meteorological droughts in the future in terms of higher drought intensity and longer events. Drought intensity is projected to increase between +25 and +50\% during 2021-2050 and between +131 and +388\% during 2071-2100. This translates into +3 to +5, and +7 to +8 more drought months per year during both periods, respectively. With longer lasting drought events, the number of drought events decreases. Projected droughts based on the high emission scenario are 1.7 times more severe than droughts based on the moderate scenario. That means that droughts in this region will likely become more severe in the coming decades. Despite the inherent high uncertainties of climate projections, the results provide a basis in planning and (water-)managing activities for climate change adaptation measures in Malawi. This is of particular relevance for water management issues referring hydro power generation and food production, both for rain-fed and irrigated agriculture.}, language = {en} }