@techreport{EydamDiluiso2022, type = {Working Paper}, author = {Eydam, Ulrich and Diluiso, Francesca}, title = {How to Redistribute the Revenues from Climate Policy?}, series = {CEPA Discussion Papers}, journal = {CEPA Discussion Papers}, number = {45}, issn = {2628-653X}, doi = {10.25932/publishup-54896}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-548960}, pages = {32}, year = {2022}, abstract = {In light of climate change mitigation efforts, revenues from climate policies are growing, with no consensus yet on how they should be used. Potential efficiency gains from reducing distortionary taxes and the distributional implications of different revenue recycling schemes are currently debated. To account for households heterogeneity and dynamic trade-offs, we study the macroeconomic and welfare performance of different revenue recycling schemes using an Environmental Two-Agent New-Keynesian model, calibrated on the German economy. We find that, in the long run, welfare gains are higher when revenues are used to reduce distortionary taxes on capital, but this comes at the cost of higher inequality: while all households prefer labor income tax reductions to lump-sum transfers, only financially unconstrained households are better off when reducing taxes on capital income. Interestingly, we find that over the transition period relevant to meet short-medium run climate targets, labor income tax cuts are the most efficient and equitable instrument.}, language = {en} } @phdthesis{Steding2022, author = {Steding, Svenja}, title = {Geochemical and Hydraulic Modeling of Cavernous Structures in Potash Seams}, doi = {10.25932/publishup-54818}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-548182}, school = {Universit{\"a}t Potsdam}, pages = {IX, 104}, year = {2022}, abstract = {Salt deposits offer a variety of usage types. These include the mining of rock salt and potash salt as important raw materials, the storage of energy in man-made underground caverns, and the disposal of hazardous substances in former mines. The most serious risk with any of these usage types comes from the contact with groundwater or surface water. It causes an uncontrolled dissolution of salt rock, which in the worst case can result in the flooding or collapse of underground facilities. Especially along potash seams, cavernous structures can spread quickly, because potash salts show a much higher solubility than rock salt. However, as their chemical behavior is quite complex, previous models do not account for these highly soluble interlayers. Therefore, the objective of the present thesis is to describe the evolution of cavernous structures along potash seams in space and time in order to improve hazard mitigation during the utilization of salt deposits. The formation of cavernous structures represents an interplay of chemical and hydraulic processes. Hence, the first step is to systematically investigate the dissolution and precipitation reactions that occur when water and potash salt come into contact. For this purpose, a geochemical reaction model is used. The results show that the minerals are only partially dissolved, resulting in a porous sponge like structure. With the saturation of the solution increasing, various secondary minerals are formed, whose number and type depend on the original rock composition. Field data confirm a correlation between the degree of saturation and the distance from the center of the cavern, where solution is entering. Subsequently, the reaction model is coupled with a flow and transport code and supplemented by a novel approach called 'interchange'. The latter enables the exchange of solution and rock between areas of different porosity and mineralogy, and thus ultimately the growth of the cavernous structure. By means of several scenario analyses, cavern shape, growth rate and mineralogy are systematically investigated, taking also heterogeneous potash seams into account. The results show that basically four different cases can be distinguished, with mixed forms being a frequent occurrence in nature. The classification scheme is based on the dimensionless numbers P{\´e}clet and Damk{\"o}hler, and allows for a first assessment of the hazard potential. In future, the model can be applied to any field case, using measurement data for calibration. The presented research work provides a reactive transport model that is able to spatially and temporally characterize the propagation of cavernous structures along potash seams for the first time. Furthermore, it allows to determine thickness and composition of transition zones between cavern center and unaffected salt rock. The latter is particularly important in potash mining, so that natural cavernous structures can be located at an early stage and the risk of mine flooding can thus be reduced. The models may also contribute to an improved hazard prevention in the construction of storage caverns and the disposal of hazardous waste in salt deposits. Predictions regarding the characteristics and evolution of cavernous structures enable a better assessment of potential hazards, such as integrity or stability loss, as well as of suitable mitigation measures.}, language = {en} } @phdthesis{Mazzanti2022, author = {Mazzanti, Stefano}, title = {Novel photocatalytic processes mediated by carbon nitride photocatalysis}, doi = {10.25932/publishup-54209}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-542099}, school = {Universit{\"a}t Potsdam}, pages = {418}, year = {2022}, abstract = {The key to reduce the energy required for specific transformations in a selective manner is the employment of a catalyst, a very small molecular platform that decides which type of energy to use. The field of photocatalysis exploits light energy to shape one type of molecules into others, more valuable and useful. However, many challenges arise in this field, for example, catalysts employed usually are based on metal derivatives, which abundance is limited, they cannot be recycled and are expensive. Therefore, carbon nitrides materials are used in this work to expand horizons in the field of photocatalysis. Carbon nitrides are organic materials, which can act as recyclable, cheap, non-toxic, heterogeneous photocatalysts. In this thesis, they have been exploited for the development of new catalytic methods, and shaped to develop new types of processes. Indeed, they enabled the creation of a new photocatalytic synthetic strategy, the dichloromethylation of enones by dichloromethyl radical generated in situ from chloroform, a novel route for the making of building blocks to be used for the productions of active pharmaceutical compounds. Then, the ductility of these materials allowed to shape carbon nitride into coating for lab vials, EPR capillaries, and a cell of a flow reactor showing the great potential of such flexible technology in photocatalysis. Afterwards, their ability to store charges has been exploited in the reduction of organic substrates under dark conditions, gaining new insights regarding multisite proton coupled electron transfer processes. Furthermore, the combination of carbon nitrides with flavins allowed the development of composite materials with improved photocatalytic activity in the CO2 photoreduction. Concluding, carbon nitrides are a versatile class of photoactive materials, which may help to unveil further scientific discoveries and to develop a more sustainable future.}, language = {en} } @techreport{CaliendoCobbClarkPfeiferetal.2022, type = {Working Paper}, author = {Caliendo, Marco and Cobb-Clark, Deborah A. and Pfeifer, Harald and Uhlendorff, Arne and Wehner, Caroline}, title = {Managers' Risk Preferences and Firm Training Investments}, series = {CEPA Discussion Papers}, journal = {CEPA Discussion Papers}, number = {44}, issn = {2628-653X}, doi = {10.25932/publishup-53843}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-538439}, pages = {45}, year = {2022}, abstract = {We provide the first estimates of the impact of managers' risk preferences on their training allocation decisions. Our conceptual framework links managers' risk preferences to firms' training decisions through the bonuses they expect to receive. Risk-averse managers are expected to select workers with low turnover risk and invest in specific rather than general training. Empirical evidence supporting these predictions is provided using a novel vignette study embedded in a nationally representative survey of firm managers. Risk-tolerant and risk-averse decision makers have significantly different training preferences. Risk aversion results in increased sensitivity to turnover risk. Managers who are risk-averse offer significantly less general training and, in some cases, are more reluctant to train workers with a history of job mobility. All managers, irrespective of their risk preferences, are sensitive to the investment risk associated with training, avoiding training that is more costly or targets those with less occupational expertise or nearing retirement. This suggests the risks of training are primarily due to the risk that trained workers will leave the firm (turnover risk) rather than the risk that the benefits of training do not outweigh the costs (investment risk).}, language = {en} } @techreport{FranksKalkuhlLessmann2022, type = {Working Paper}, author = {Franks, Max and Kalkuhl, Matthias and Lessmann, Kai}, title = {Optimal Pricing for Carbon Dioxide Removal Under Inter-Regional Leakage}, series = {CEPA Discussion Papers}, journal = {CEPA Discussion Papers}, number = {43}, issn = {2628-653X}, doi = {10.25932/publishup-53808}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-538080}, pages = {12}, year = {2022}, abstract = {Carbon dioxide removal (CDR) moves atmospheric carbon to geological or land-based sinks. In a first-best setting, the optimal use of CDR is achieved by a removal subsidy that equals the optimal carbon tax and marginal damages. We derive second-best subsidies for CDR when no global carbon price exists but a national government implements a unilateral climate policy. We find that the optimal carbon tax differs from an optimal CDR subsidy because of carbon leakage, terms-of-trade and fossil resource rent dynamics. First, the optimal removal subsidy tends to be larger than the carbon tax because of lower supply-side leakage on fossil resource markets. Second, terms-of-trade effects exacerbate this wedge for net resource exporters, implying even larger removal subsidies. Third, the optimal removal subsidy may fall below the carbon tax for resource-poor countries when marginal environmental damages are small.}, language = {en} } @book{WeissVerlaanVasquezCarruthersetal.2022, author = {Weiß, Norman and Verlaan, Stephanie and Vasquez Carruthers, Juan Francisco and Mair, Theresa and Conner, Sean and Maaser, Lucas and R{\"o}thlisberger, Livia}, title = {Transitional Justice}, series = {Potsdamer Studien zu Staat, Recht und Politik}, journal = {Potsdamer Studien zu Staat, Recht und Politik}, number = {7}, editor = {Weiß, Norman}, publisher = {Universit{\"a}tsverlag Potsdam}, address = {Potsdam}, isbn = {978-3-86956-473-9}, issn = {1869-2443}, doi = {10.25932/publishup-43171}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-431711}, publisher = {Universit{\"a}t Potsdam}, pages = {194}, year = {2022}, abstract = {This publication deals with the topic of transitional justice. In six case studies, the authors link theoretical and practical implications in order to develop some innovative approaches. Their proposals might help to deal more effectively with the transition of societies, legal orders and political systems. Young academics from various backgrounds provide fresh insights and demonstrate the relevance of the topic. The chapters analyse transitions and conflicts in Sierra Leone, Argentina, Nicaragua, Nepal, and South Sudan as well as Germany's colonial genocide in Namibia. Thus, the book provides the reader with new insights and contributes to the ongoing debate about transitional justice.}, language = {en} } @techreport{CaliendoKuennMahlstedt2022, type = {Working Paper}, author = {Caliendo, Marco and K{\"u}nn, Steffen and Mahlstedt, Robert}, title = {The Intended and Unintended Effects of Promoting Labor Market Mobility}, series = {CEPA Discussion Papers}, journal = {CEPA Discussion Papers}, issn = {2628-653X}, doi = {10.25932/publishup-53522}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-535229}, pages = {49}, year = {2022}, abstract = {Subsidizing the geographical mobility of unemployed workers may improve welfare by relaxing their financial constraints and allowing them to find jobs in more prosperous regions. We exploit regional variation in the promotion of mobility programs along administrative borders of German employment agency districts to investigate the causal effect of offering such financial incentives on the job search behavior and labor market integration of unemployed workers. We show that promoting mobility - as intended - causes job seekers to increase their search radius, apply for and accept distant jobs. At the same time, local job search is reduced with adverse consequences for reemployment and earnings. These unintended negative effects are provoked by spatial search frictions. Overall, the unconditional provision of mobility programs harms the welfare of unemployed job seekers.}, language = {en} } @techreport{BacheletKalkuhlKoch2022, type = {Working Paper}, author = {Bachelet, Marion and Kalkuhl, Matthias and Koch, Nicolas}, title = {What if working from home will stick?}, series = {CEPA Discussion Papers}, journal = {CEPA Discussion Papers}, number = {41}, issn = {2628-653X}, doi = {10.25932/publishup-53238}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-532384}, pages = {28}, year = {2022}, abstract = {The COVID-19 pandemic created the largest experiment in working from home. We study how persistent telework may change energy and transport consumption and costs in Germany to assess the distributional and environmental implications when working from home will stick. Based on data from the German Microcensus and available classifications of working-from-home feasibility for different occupations, we calculate the change in energy consumption and travel to work when 15\% of employees work full time from home. Our findings suggest that telework translates into an annual increase in heating energy expenditure of 110 euros per worker and a decrease in transport expenditure of 840 euros per worker. All income groups would gain from telework but high-income workers gain twice as much as low-income workers. The value of time saving is between 1.3 and 6 times greater than the savings from reduced travel costs and almost 9 times higher for high-income workers than low-income workers. The direct effects on CO₂ emissions due to reduced car commuting amount to 4.5 millions tons of CO₂, representing around 3 percent of carbon emissions in the transport sector.}, language = {en} }