@article{HoenickeBlissMoritz2015, author = {H{\"o}nicke, Christiane and Bliss, Peter and Moritz, Robin F. A.}, title = {Effect of density on traffic and velocity on trunk trails of Formica pratensis}, series = {The science of nature}, volume = {102}, journal = {The science of nature}, number = {3-4}, publisher = {Springer}, address = {Heidelberg}, issn = {0028-1042}, doi = {10.1007/s00114-015-1267-6}, pages = {9}, year = {2015}, abstract = {The allocation of large numbers of workers facilitates the swift intake of locally available resources which is essential for ant colony survival. To organise the traffic between nest and food source, the black-meadow ant Formica pratensis establishes permanent trunk trails, which are maintained by the ants. To unravel the ant organisation and potential traffic rules on these trails, we analysed velocity and lane segregation under various densities by experimentally changing feeding regimes. Even under the highest ant densities achieved, we never observed any traffic jams. On the contrary, velocity increased after supplementary feeding despite an enhanced density. Furthermore, inbound ants returning to the nest had a higher velocity than those leaving the colony. Whilst at low and medium density the ants used the centre of the trail, they used the full width of the trail at high density. Outbound ants also showed some degree of lane segregation which contributes to traffic organisation.}, language = {en} } @article{RossiTelkemeyerWartenburgeretal.2012, author = {Rossi, Sonja and Telkemeyer, Silke and Wartenburger, Isabell and Obrig, Hellmuth}, title = {Shedding light on words and sentences near-infrared spectroscopy in language research}, series = {Brain \& language : a journal of the neurobiology of language}, volume = {121}, journal = {Brain \& language : a journal of the neurobiology of language}, number = {2}, publisher = {Elsevier}, address = {San Diego}, issn = {0093-934X}, doi = {10.1016/j.bandl.2011.03.008}, pages = {152 -- 163}, year = {2012}, abstract = {Investigating the neuronal network underlying language processing may contribute to a better understanding of how the brain masters this complex cognitive function with surprising ease and how language is acquired at a fast pace in infancy. Modern neuroimaging methods permit to visualize the evolvement and the function of the language network. The present paper focuses on a specific methodology, functional near-infrared spectroscopy (fNIRS), providing an overview over studies on auditory language processing and acquisition. The methodology detects oxygenation changes elicited by functional activation of the cerebral cortex. The main advantages for research on auditory language processing and its development during infancy are an undemanding application, the lack of instrumental noise, and its potential to simultaneously register electrophysiological responses. Also it constitutes an innovative approach for studying developmental issues in infants and children. The review will focus on studies on word and sentence processing including research in infants and adults.}, language = {en} }