@article{HancockWaeschkeSchumacheretal.2013, author = {Hancock, Christine and W{\"a}schke, Nicole and Schumacher, Uta and Linsenmair, Karl Eduard and Meiners, Torsten and Obermaier, Elisabeth}, title = {Fertilizer application decreases insect abundance on Plantago lanceolata - a large-scale experiment in three geographic regions}, series = {Arthropod-plant interactions : an international journal devoted to studies on interactions of insects, mites, and other arthropods with plants}, volume = {7}, journal = {Arthropod-plant interactions : an international journal devoted to studies on interactions of insects, mites, and other arthropods with plants}, number = {2}, publisher = {Springer}, address = {Dordrecht}, issn = {1872-8855}, doi = {10.1007/s11829-012-9237-9}, pages = {147 -- 158}, year = {2013}, abstract = {Humans have substantially altered the nitrogen cycle of ecosystems through the application of agricultural fertilizer. Fertilization may not only affect plant species diversity, but also insect dynamics by altering plant nitrogen supplies. We investigated the effect of experimental fertilization on the vegetation, with the ribwort plantain as the focal plant, and on higher trophic levels on differently managed grasslands throughout Germany. Over a period of 2 years, we examined two specialist herbivores and their parasitoid on Plantago lanceolata L., and the composition and structure of the surrounding vegetation. Over 70 sites in three geographic regions, within the large-scale project "German Biodiversity Exploratories", were included in the study. The model system consisted of the host plant P. lanceolata L., the monophagous weevils Mecinus labilis Herbst and M. pascuorum Gyllenhal, and their parasitoid Mesopolobus incultus Walker. Fertilization decreased plant species richness and host plant abundance, whereas it enhanced the total vegetation growth. The increased size and heigher leaf nitrogen content did not improve herbivore performance. On the contrary, the abundance of the two herbivores was decreased by fertilization. The parasitoid depended on the abundance of one of its hosts, M. pascuorum (positively density-dependent). Reduced herbivore abundance due to fertilization might be explained by a lower abundance of the host plant, a lower stalk number, and by changed patterns of host localization within higher vegetation. Fertilization negatively affected the third trophic level by cascading up via host abundance. The relationships between fertilization, surrounding vegetation and the tritrophic system were measured throughout the three regions and over the 2-year period. Our findings present consequences of intensification for a plant-herbivore-parasitoid system, and may have significant implications for the conservation of multitrophic systems in managed grasslands.}, language = {en} } @article{KlausKleinebeckerHoelzeletal.2011, author = {Klaus, Valentin H. and Kleinebecker, Till and Hoelzel, Norbert and Bluethgen, Nico and Boch, Steffen and M{\"u}ller, J{\"o}rg and Socher, Stephanie A. and Prati, Daniel and Fischer, Markus}, title = {Nutrient concentrations and fibre contents of plant community biomass reflect species richness patterns along a broad range of land-use intensities among agricultural grasslands}, series = {Perspectives in plant ecology, evolution and systematics}, volume = {13}, journal = {Perspectives in plant ecology, evolution and systematics}, number = {4}, publisher = {Elsevier}, address = {Jena}, issn = {1433-8319}, doi = {10.1016/j.ppees.2011.07.001}, pages = {287 -- 295}, year = {2011}, abstract = {Understanding changes in biodiversity in agricultural landscapes in relation to land-use type and intensity is a major issue in current ecological research. In this context nutrient enrichment has been identified as a key mechanism inducing species loss in Central European grassland ecosystems. At the same time, insights into the linkage between agricultural land use and plant nutrient status are largely missing. So far, studies on the relationship between chemical composition of plant community biomass and biodiversity have mainly been restricted to wetlands and all these studies neglected the effects of land use. Therefore, we analyzed aboveground biomass of 145 grassland plots covering a gradient of land-use intensities in three regions across Germany. In particular, we explored relationships between vascular plant species richness and nutrient concentrations as well as fibre contents (neutral and acid detergent fibre and lignin) in the aboveground community biomass. We found the concentrations of several nutrients in the biomass to be closely linked to plant species richness and land use. Whereas phosphorus concentrations increased with land-use intensity and decreased with plant species richness, nitrogen and potassium concentrations showed less clear patterns. Fibre fractions were negatively related to nutrient concentrations in biomass, but hardly to land-use measures and species richness. Only high lignin contents were positively associated with species richness of grasslands. The N:P ratio was strongly positively related to species richness and even more so to the number of endangered plant species, indicating a higher persistence of endangered species under P (co-)limited conditions. Therefore, we stress the importance of low P supply for species-rich grasslands and suggest the N:P ratio in community biomass to be a useful proxy of the conservation value of agriculturally used grasslands.}, language = {en} } @article{KlausKleinebeckerPratietal.2013, author = {Klaus, Valentin H. and Kleinebecker, Till and Prati, Daniel and Gossner, Martin M. and Alt, Fabian and Boch, Steffen and Gockel, Sonja and Hemp, Andreas and Lange, Markus and M{\"u}ller, J{\"o}rg and Oelmann, Yvonne and Pasalic, Esther and Renner, Swen C. and Socher, Stephanie A. and T{\"u}rke, Manfred and Weisser, Wolfgang W. and Fischer, Markus and H{\"o}lzel, Norbert}, title = {Does organic grassland farming benefit plant and arthropod diversity at the expense of yield and soil fertility?}, series = {Agriculture, ecosystems \& environment : an international journal for scientific research on the relationship of agriculture and food production to the biosphere}, volume = {177}, journal = {Agriculture, ecosystems \& environment : an international journal for scientific research on the relationship of agriculture and food production to the biosphere}, number = {3}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0167-8809}, doi = {10.1016/j.agee.2013.05.019}, pages = {1 -- 9}, year = {2013}, abstract = {Organic management is one of the most popular strategies to reduce negative environmental impacts of intensive agriculture. However, little is known about benefits for biodiversity and potential worsening of yield under organic grasslands management across different grassland types, i.e. meadow, pasture and mown pasture. Therefore, we studied the diversity of vascular plants and foliage-living arthropods (Coleoptera, Araneae, Heteroptera, Auchenorrhyncha), yield, fodder quality, soil phosphorus concentrations and land-use intensity of organic and conventional grasslands across three study regions in Germany. Furthermore, all variables were related to the time since conversion to organic management in order to assess temporal developments reaching up to 18 years. Arthropod diversity was significantly higher under organic than conventional management, although this was not the case for Araneae, Heteroptera and Auchenorrhyncha when analyzed separately. On the contrary, arthropod abundance, vascular plant diversity and also yield and fodder quality did not considerably differ between organic and conventional grasslands. Analyses did not reveal differences in the effect of organic management among grassland types. None of the recorded abiotic and biotic parameters showed a significant trend with time since transition to organic management, except soil organic phosphorus concentrations which decreased with time. This implies that permanent grasslands respond slower and probably weaker to organic management than crop fields do. However, as land-use intensity and inorganic soil phosphorus concentrations were significantly lower in organic grasslands, overcoming seed and dispersal limitation by re-introducing plant species might be needed to exploit the full ecological potential of organic grassland management. We conclude that although organic management did not automatically increase the diversity of all studied taxa, it is a reasonable and useful way to support agro-biodiversity.}, language = {en} } @article{KurzeHeinkenFartmann2017, author = {Kurze, Susanne and Heinken, Thilo and Fartmann, Thomas}, title = {Nitrogen enrichment of host plants has mostly beneficial effects on the life-history traits of nettle-feeding butterflies}, series = {Acta oecologica : international journal of ecology}, volume = {85}, journal = {Acta oecologica : international journal of ecology}, publisher = {Elsevier}, address = {Amsterdam}, issn = {1146-609X}, doi = {10.1016/j.actao.2017.11.005}, pages = {157 -- 164}, year = {2017}, abstract = {Butterflies rank among the most threatened animal groups throughout Europe. However, current population trends differ among species. The nettle-feeding butterflies Aglais io and Aglais urticae cope successfully with the anthropogenic land-use change. Both species are assumed to be pre-adapted to higher nitrogen contents in their host plant, stinging nettle (Urtica dioica). However, it is currently unknown, whether this pre-adaptation enables both Aglais species to cope successfully or even to benefit from the excessive nitrogen availabilities in nettles growing in modern farmlands. For this reason, this study focused on the response of both Aglais species to unfertilized nettles compared to nettles receiving 150 or 300 kg N ha(-1) yr(-1) (i.e., common fertilizer quantities of modern-day agriculture). Fertilized nettles were characterized by higher nitrogen concentrations and lower C:N ratios compared to the control group. In both Aglais species, the individuals feeding on fertilized nettles had higher survival rates, shorter larval periods and heavier pupae and, in A. urticae also longer forewings. All these trait shifts are beneficial for the individuals, lowering their risk to die before reproduction and increasing their reproductive potential. These responses agree with the well-accepted nitrogen-limitation hypothesis predicting a positive relationship between the nitrogen content of the diet and the performance of herbivorous insects. Furthermore, our findings suggest that the increasing abundance of both Aglais species may result not only from the increasing spread of nettles into the farmland but also from changes in their quality due to the eutrophication of the landscape during recent decades.}, language = {en} }