@article{MalchowBocediPalmeretal.2021, author = {Malchow, Anne-Kathleen and Bocedi, Greta and Palmer, Stephen C. F. and Travis, Justin M. J. and Zurell, Damaris}, title = {RangeShiftR}, series = {Ecography : pattern and diversity in ecology / Nordic Ecologic Society Oikos}, volume = {44}, journal = {Ecography : pattern and diversity in ecology / Nordic Ecologic Society Oikos}, number = {10}, publisher = {Wiley-Blackwell}, address = {Oxford [u.a.]}, issn = {1600-0587}, doi = {10.1111/ecog.05689}, pages = {1443 -- 1452}, year = {2021}, abstract = {Reliably modelling the demographic and distributional responses of a species to environmental changes can be crucial for successful conservation and management planning. Process-based models have the potential to achieve this goal, but so far they remain underused for predictions of species' distributions. Individual-based models offer the additional capability to model inter-individual variation and evolutionary dynamics and thus capture adaptive responses to environmental change. We present RangeShiftR, an R implementation of a flexible individual-based modelling platform which simulates eco-evolutionary dynamics in a spatially explicit way. The package provides flexible and fast simulations by making the software RangeShifter available for the widely used statistical programming platform R. The package features additional auxiliary functions to support model specification and analysis of results. We provide an outline of the package's functionality, describe the underlying model structure with its main components and present a short example. RangeShiftR offers substantial model complexity, especially for the demographic and dispersal processes. It comes with elaborate tutorials and comprehensive documentation to facilitate learning the software and provide help at all levels. As the core code is implemented in C++, the computations are fast. The complete source code is published under a public licence, making adaptations and contributions feasible. The RangeShiftR package facilitates the application of individual-based and mechanistic modelling to eco-evolutionary questions by operating a flexible and powerful simulation model from R. It allows effortless interoperation with existing packages to create streamlined workflows that can include data preparation, integrated model specification and results analysis. Moreover, the implementation in R strengthens the potential for coupling RangeShiftR with other models.}, language = {en} } @article{QiuZhangBicketal.2021, author = {Qiu, Liang and Zhang, Haoran and Bick, Thomas and Martin, Johannes and Wendler, Petra and B{\"o}ker, Alexander and Glebe, Ulrich and Xing, Chengfen}, title = {Construction of highly ordered glyco-inside nano-assemblies through RAFT dispersion polymerization of galactose-decorated monomer}, series = {Angewandte Chemie : a journal of the Gesellschaft Deutscher Chemiker ; International edition}, volume = {60}, journal = {Angewandte Chemie : a journal of the Gesellschaft Deutscher Chemiker ; International edition}, number = {20}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {1433-7851}, doi = {10.1002/anie.202015692}, pages = {11098 -- 11103}, year = {2021}, abstract = {Glyco-assemblies derived from amphiphilic sugar-decorated block copolymers (ASBCs) have emerged prominently due to their wide application, for example, in biomedicine and as drug carriers. However, to efficiently construct these glyco-assemblies is still a challenge. Herein, we report an efficient technology for the synthesis of glyco-inside nano-assemblies by utilizing RAFT polymerization of a galactose-decorated methacrylate for polymerization-induced self-assembly (PISA). Using this approach, a series of highly ordered glyco-inside nano-assemblies containing intermediate morphologies were fabricated by adjusting the length of the hydrophobic glycoblock and the polymerization solids content. A specific morphology of complex vesicles was captured during the PISA process and the formation mechanism is explained by the morphology of its precursor and intermediate. Thus, this method establishes a powerful route to fabricate glyco-assemblies with tunable morphologies and variable sizes, which is significant to enable the large-scale fabrication and wide application of glyco-assemblies.}, language = {en} } @article{HermanussenErofeevScheffler2022, author = {Hermanussen, Michael and Erofeev, Sergei and Scheffler, Christiane}, title = {The socio-endocrine regulation of human growth}, series = {Acta paediatrica : nurturing the child}, journal = {Acta paediatrica : nurturing the child}, publisher = {Wiley}, address = {Hoboken}, issn = {0803-5253}, doi = {10.1111/apa.16504}, pages = {5}, year = {2022}, abstract = {Aim Growth is a multifarious phenomenon that has been studied by nutritionists, economists, paediatric endocrinologists; archaeologists, child psychologists and other experts. Yet, a unifying theory of understanding growth regulation is still lacking. Method Critical review of the literature. Results We summarise evidence linking social competition and its effect on hierarchies in social structures, with the neuronal networks of the ventromedial hypothalamus and body size. The endocrine signalling system regulating growth hormone, Insulin-like-Growth-Factor1 and skeletal growth, is well conserved in the evolution of vertebrata for some 400 million years. The link between size and status permits adaptive plasticity, competitive growth and strategic growth adjustments also in humans. Humans perceive size as a signal of dominance with tallness being favoured and particularly prevalent in the upper social classes. Conclusion Westernised societies are competitive. People are tall, and "open to change." Social values include striving for status and prestige implying socio-economic domination. We consider the transition of political and social values following revolutions and civil wars, as key elements that interact with the evolutionarily conserved neuroendocrine competence for adaptive developmental plasticity, overstimulate the hypothalamic growth regulation and finally lead to the recent historic increases in average height.}, language = {en} } @article{BaunachChowdhuryStallforthetal.2021, author = {Baunach, Martin and Chowdhury, Somak and Stallforth, Pierre and Dittmann-Th{\"u}nemann, Elke}, title = {The landscape of recombination events that create nonribosomal peptide diversity}, series = {Molecular biology and evolution : MBE}, volume = {38}, journal = {Molecular biology and evolution : MBE}, number = {5}, publisher = {Oxford Univ. Press}, address = {Oxford}, issn = {0737-4038}, doi = {10.1093/molbev/msab015}, pages = {2116 -- 2130}, year = {2021}, abstract = {Nonribosomal peptides (NRP) are crucial molecular mediators in microbial ecology and provide indispensable drugs. Nevertheless, the evolution of the flexible biosynthetic machineries that correlates with the stunning structural diversity of NRPs is poorly understood. Here, we show that recombination is a key driver in the evolution of bacterial NRP synthetase (NRPS) genes across distant bacterial phyla, which has guided structural diversification in a plethora of NRP families by extensive mixing andmatching of biosynthesis genes. The systematic dissection of a large number of individual recombination events did not only unveil a striking plurality in the nature and origin of the exchange units but allowed the deduction of overarching principles that enable the efficient exchange of adenylation (A) domain substrates while keeping the functionality of the dynamic multienzyme complexes. In the majority of cases, recombination events have targeted variable portions of the A(core) domains, yet domain interfaces and the flexible A(sub) domain remained untapped. Our results strongly contradict the widespread assumption that adenylation and condensation (C) domains coevolve and significantly challenge the attributed role of C domains as stringent selectivity filter during NRP synthesis. Moreover, they teach valuable lessons on the choice of natural exchange units in the evolution of NRPS diversity, which may guide future engineering approaches.}, language = {en} } @phdthesis{GonzalezDuran2023, author = {Gonzalez Duran, Enrique}, title = {Genetic control of intracellular gene transfer by DNA repair in N. tabacum}, school = {Universit{\"a}t Potsdam}, pages = {XII, 127, XLI}, year = {2023}, abstract = {Mitochondria and plastids are organelles with an endosymbiotic origin. During evolution, many genes are lost from the organellar genomes and get integrated in the nuclear genome, in what is known as intracellular/endosymbiotic gene transfer (IGT/EGT). IGT has been reproduced experimentally in Nicotiana tabacum at a gene transfer rate (GTR) of 1 event in 5 million cells, but, despite its centrality to eukaryotic evolution, there are no genetic factors known to influence the frequency of IGT in higher eukaryotes. The focus of this work was to determine the role of different DNA repair pathways of double strand break repair (DSBR) in the integration step of organellar DNA in the nuclear genome during IGT. Here, a CRISPR/Cas9 mutagenesis strategy was implemented in N. tabacum, with the aim of generating mutants in nuclear genes without expected visible phenotypes. This strategy led to the generation of a collection of independent mutants in the LIG4 (necessary for non-homologous end joining, NHEJ) and POLQ genes (necessary for microhomology mediated end joining, MMEJ). Targeting of other DSBR genes (KU70, KU80, RPA1C) generated mutants with unexpectedly strong developmental phenotypes.. These factors have telomeric roles, hinting towards a possible relationship between telomere length, and strength of developmental disruption upon loss of telomere structure in plants. The mutants were made in a genetic background encoding a plastid-encoded IGT reporter, that confers kanamycin resistance upon transfer to the nucleus. Through large scale independent experiments, increased IGT from the chloroplast to the nucleus was observed in lig4 mutants, as well as lines encoding a POLQ gene with a defective polymerase domain (polqΔPol). This shows that NHEJ or MMEJ have a double-sided relationship with IGT: while transferred genes may integrate using either pathway, the presence of both pathways suppresses IGT in wild-type somatic cells, thus demonstrating for the first time the extent on which nuclear genes control IGT frequency in plants. The IGT frequency increases in the mutants are likely mediated by increased availability of double strand breaks for integration. Additionally, kinetic analysis reveals that gene transfer (GT) events accumulate linearly as a function of time spent under antibiotic selection in the experiment, demonstrating that, contrary to what was previously thought, there is no such thing as a single GTR in somatic IGT experiments. Furthermore, IGT in tissue culture experiments appears to be the result of a "race against the clock" for integration in the nuclear genome, that starts when the organellar DNA arrives to the nucleus granting transient antibiotic resistance. GT events and escapes of kanamycin selection may be two possible outcomes from this race: those instances where the organellar DNA gets to integrate are recovered as GT events, and in those cases where timely integration fails, antibiotic resistance cannot be sustained, and end up considered as escapes. In the mutants, increased opportunities for integration in the nuclear genome change the overall ratio between IGT and escape events. The resources generated here are promising starting points for future research: (1) the mutant collection, for the further study of processes that depend on DNA repair in plants (2) the collection of GT lines obtained from these experiments, for the study of the effect of DSBR pathways over integration patterns and stability of transferred genes and (3) the developed CRISPR/Cas9 workflow for mutant generation, to make N. tabacum meet its potential as an attractive model for answering complex biological questions.}, language = {en} } @article{LenznerMagallonDawsonetal.2020, author = {Lenzner, Bernd and Magallon, Susana and Dawson, Wayne and Kreft, Holger and K{\"o}nig, Christian and Pergl, Jan and Pysek, Petr and Weigelt, Patrick and van Kleunen, Mark and Winter, Marten and Dullinger, Stefan and Essl, Franz}, title = {Role of diversification rates and evolutionary history as a driver of plant naturalization success}, series = {New phytologist : international journal of plant science}, volume = {229}, journal = {New phytologist : international journal of plant science}, number = {5}, publisher = {Wiley}, address = {Hoboken}, issn = {0028-646X}, doi = {10.1111/nph.17014}, pages = {2998 -- 3008}, year = {2020}, abstract = {Human introductions of species beyond their natural ranges and their subsequent establishment are defining features of global environmental change. However, naturalized plants are not uniformly distributed across phylogenetic lineages, with some families contributing disproportionately more to the global alien species pool than others. Additionally, lineages differ in diversification rates, and high diversification rates have been associated with characteristics that increase species naturalization success. Here, we investigate the role of diversification rates in explaining the naturalization success of angiosperm plant families. We use five global data sets that include native and alien plant species distribution, horticultural use of plants, and a time-calibrated angiosperm phylogeny. Using phylogenetic generalized linear mixed models, we analysed the effect of diversification rate, different geographical range measures, and horticultural use on the naturalization success of plant families. We show that a family's naturalization success is positively associated with its evolutionary history, native range size, and economic use. Investigating interactive effects of these predictors shows that native range size and geographic distribution additionally affect naturalization success. High diversification rates and large ranges increase naturalization success, especially of temperate families. We suggest this may result from lower ecological specialization in temperate families with large ranges, compared with tropical families with smaller ranges.}, language = {en} } @article{EhrlichKathGaedke2020, author = {Ehrlich, Elias and Kath, Nadja Jeanette and Gaedke, Ursula}, title = {The shape of a defense-growth trade-off governs seasonal trait dynamics in natural phytoplankton}, series = {The ISME journal}, volume = {14}, journal = {The ISME journal}, number = {6}, publisher = {Nature Publishing Group}, address = {London}, issn = {1751-7362}, doi = {10.1038/s41396-020-0619-1}, pages = {1451 -- 1462}, year = {2020}, abstract = {Theory predicts that trade-offs, quantifying costs of functional trait adjustments, crucially affect community trait adaptation to altered environmental conditions, but empirical verification is scarce. We evaluated trait dynamics (antipredator defense, maximum growth rate, and phosphate affinity) of a lake phytoplankton community in a seasonally changing environment, using literature trait data and 21 years of species-resolved high-frequency biomass measurements. The trait data indicated a concave defense-growth trade-off, promoting fast-growing species with intermediate defense. With seasonally increasing grazing pressure, the community shifted toward higher defense levels at the cost of lower growth rates along the trade-off curve, while phosphate affinity explained some deviations from it. We discuss how low fitness differences of species, inferred from model simulations, in concert with stabilizing mechanisms, e.g., arising from further trait dimensions, may lead to the observed phytoplankton diversity. In conclusion, quantifying trade-offs is key for predictions of community trait adaptation and biodiversity under environmental change.}, language = {en} } @article{WestburyHartmannBarlowetal.2018, author = {Westbury, Michael V. and Hartmann, Stefanie and Barlow, Axel and Wiesel, Ingrid and Leo, Viyanna and Welch, Rebecca and Parker, Daniel M. and Sicks, Florian and Ludwig, Arne and Dalen, Love and Hofreiter, Michael}, title = {Extended and continuous decline in effective population size results in low genomic diversity in the world's rarest hyena species, the brown hyena}, series = {Molecular biology and evolution}, volume = {35}, journal = {Molecular biology and evolution}, number = {5}, publisher = {Oxford Univ. Press}, address = {Oxford}, issn = {0737-4038}, doi = {10.1093/molbev/msy037}, pages = {1225 -- 1237}, year = {2018}, abstract = {Hyenas (family Hyaenidae), as the sister group to cats (family Felidae), represent a deeply diverging branch within the cat-like carnivores (Feliformia). With an estimated population size of <10,000 individuals worldwide, the brown hyena (Parahyaena brunnea) represents the rarest of the four extant hyena species and has been listed as Near Threatened by the IUCN. Here, we report a high-coverage genome from a captive bred brown hyena and both mitochondrial and low-coverage nuclear genomes of 14 wild-caught brown hyena individuals from across southern Africa. We find that brown hyena harbor extremely low genetic diversity on both the mitochondrial and nuclear level, most likely resulting from a continuous and ongoing decline in effective population size that started similar to 1 Ma and dramatically accelerated towards the end of the Pleistocene. Despite the strikingly low genetic diversity, we find no evidence of inbreeding within the captive bred individual and reveal phylogeographic structure, suggesting the existence of several potential subpopulations within the species.}, language = {en} } @article{MalchowBocediPalmeretal.2021, author = {Malchow, Anne-Kathleen and Bocedi, Greta and Palmer, Stephen C. F. and Travis, Justin M. J. and Zurell, Damaris}, title = {RangeShiftR: an R package for individual-based simulation of spatial eco-evolutionary dynamics and speciesu0027 responses to environmental changes}, series = {Ecography}, volume = {44}, journal = {Ecography}, number = {10}, publisher = {John Wiley \& Sons, Inc.}, address = {New Jersey}, issn = {1600-0587}, pages = {10}, year = {2021}, abstract = {Reliably modelling the demographic and distributional responses of a species to environmental changes can be crucial for successful conservation and management planning. Process-based models have the potential to achieve this goal, but so far they remain underused for predictions of species' distributions. Individual-based models offer the additional capability to model inter-individual variation and evolutionary dynamics and thus capture adaptive responses to environmental change. We present RangeShiftR, an R implementation of a flexible individual-based modelling platform which simulates eco-evolutionary dynamics in a spatially explicit way. The package provides flexible and fast simulations by making the software RangeShifter available for the widely used statistical programming platform R. The package features additional auxiliary functions to support model specification and analysis of results. We provide an outline of the package's functionality, describe the underlying model structure with its main components and present a short example. RangeShiftR offers substantial model complexity, especially for the demographic and dispersal processes. It comes with elaborate tutorials and comprehensive documentation to facilitate learning the software and provide help at all levels. As the core code is implemented in C++, the computations are fast. The complete source code is published under a public licence, making adaptations and contributions feasible. The RangeShiftR package facilitates the application of individual-based and mechanistic modelling to eco-evolutionary questions by operating a flexible and powerful simulation model from R. It allows effortless interoperation with existing packages to create streamlined workflows that can include data preparation, integrated model specification and results analysis. Moreover, the implementation in R strengthens the potential for coupling RangeShiftR with other models.}, language = {en} } @article{LozadaGobilardWeigendFischeretal.2019, author = {Lozada Gobilard, Sissi Donna and Weigend, M. and Fischer, E. and Janssens, S. B. and Ackermann, M. and Abrahamczyk, Stefan}, title = {Breeding systems in Balsaminaceae in relation to pollen/ovule ratio, pollination syndromes, life history and climate zone}, series = {Plant biology}, volume = {21}, journal = {Plant biology}, number = {1}, publisher = {Wiley}, address = {Hoboken}, issn = {1435-8603}, doi = {10.1111/plb.12905}, pages = {157 -- 166}, year = {2019}, abstract = {Pollen/ovule (P/O) ratios are often used as proxy for breeding systems. Here, we investigate the relations between breeding systems and P/O ratios, pollination syndromes, life history and climate zone in Balsaminaceae. We conducted controlled breeding system experiments (autonomous and active self-pollination and outcrossing tests) for 65 Balsaminaceae species, analysed pollen grain and ovule numbers and evaluated the results in combination with data on pollination syndrome, life history and climate zone on a phylogenetic basis. Based on fruit set, we assigned three breeding systems: autogamy, self-compatibility and self-incompatibility. Self-pollination led to lower fruit set than outcrossing. We neither found significant P/O differences between breeding systems nor between pollination syndromes. However, the numbers of pollen grains and ovules per flower were significantly lower in autogamous species, but pollen grain and ovule numbers did not differ between most pollination syndromes. Finally, we found no relation between breeding system and climate zone, but a relation between climate zone and life history. In Balsaminaceae reproductive traits can change under resource or pollinator limitation, leading to the evolution of autogamy, but are evolutionary rather constant and not under strong selection pressure by pollinator guild and geographic range changes. Colonisation of temperate regions, however, is correlated with transitions towards annual life history. Pollen/ovule-ratios, commonly accepted as good indicators of breeding system, have a low predictive value in Balsaminaceae. In the absence of experimental data on breeding system, additional floral traits (overall pollen grain and ovule number, traits of floral morphology) may be used as proxies.}, language = {en} } @phdthesis{Autenrieth2020, author = {Autenrieth, Marijke}, title = {Population genomics of two odontocetes in the North Atlantic and adjacent waters}, school = {Universit{\"a}t Potsdam}, pages = {IX, 110}, year = {2020}, abstract = {Due to continuously intensifying human usage of the marine environment worldwide ranging cetaceans face an increasing number of threats. Besides whaling, overfishing and by-catch, new technical developments increase the water and noise pollution, which can negatively affect marine species. Cetaceans are especially prone to these influences, being at the top of the food chain and therefore accumulating toxins and contaminants. Furthermore, they are extremely noise sensitive due to their highly developed hearing sense and echolocation ability. As a result, several cetacean species were brought to extinction during the last century or are now classified as critically endangered. This work focuses on two odontocetes. It applies and compares different molecular methods for inference of population status and adaptation, with implications for conservation. The worldwide distributed sperm whale (Physeter macrocephalus) shows a matrilineal population structure with predominant male dispersal. A recently stranded group of male sperm whales provided a unique opportunity to investigate male grouping for the first time. Based on the mitochondrial control region, I was able to infer that male bachelor groups comprise multiple matrilines, hence derive from different social groups, and that they represent the genetic variability of the entire North Atlantic. The harbor porpoise (Phocoena phocoena) occurs only in the northern hemisphere. By being small and occurring mostly in coastal habitats it is especially prone to human disturbance. Since some subspecies and subpopulations are critically endangered, it is important to generate and provide genetic markers with high resolution to facilitate population assignment and subsequent protection measurements. Here, I provide the first harbour porpoise whole genome, in high quality and including a draft annotation. Using it for mapping ddRAD seq data, I identify genome wide SNPs and, together with a fragment of the mitochondrial control region, inferred the population structure of its North Atlantic distribution range. The Belt Sea harbors a distinct subpopulation oppose to the North Atlantic, with a transition zone in the Kattegat. Within the North Atlantic I could detect subtle genetic differentiation between western (Canada-Iceland) and eastern (North Sea) regions, with support for a German North Sea breading ground around the Isle of Sylt. Further, I was able to detect six outlier loci which show isolation by distance across the investigated sampling areas. In employing different markers, I could show that single maker systems as well as genome wide data can unravel new information about population affinities of odontocetes. Genome wide data can facilitate investigation of adaptations and evolutionary history of the species and its populations. Moreover, they facilitate population genetic investigations, providing a high resolution, and hence allowing for detection of subtle population structuring especially important for highly mobile cetaceans.}, language = {en} } @article{ZancolliBakerBarlowetal.2016, author = {Zancolli, Giulia and Baker, Timothy G. and Barlow, Axel and Bradley, Rebecca K. and Calvete, Juan J. and Carter, Kimberley C. and de Jager, Kaylah and Owens, John Benjamin and Price, Jenny Forrester and Sanz, Libia and Scholes-Higham, Amy and Shier, Liam and Wood, Liam and W{\"u}ster, Catharine E. and W{\"u}ster, Wolfgang}, title = {Is Hybridization a Source of Adaptive Venom Variation in Rattlesnakes? A Test, Using a Crotalus scutulatus x viridis Hybrid Zone in Southwestern New Mexico}, series = {Toxins}, volume = {8}, journal = {Toxins}, publisher = {MDPI}, address = {Basel}, issn = {2072-6651}, doi = {10.3390/toxins8060188}, pages = {16}, year = {2016}, abstract = {Venomous snakes often display extensive variation in venom composition both between and within species. However, the mechanisms underlying the distribution of different toxins and venom types among populations and taxa remain insufficiently known. Rattlesnakes (Crotalus, Sistrurus) display extreme inter-and intraspecific variation in venom composition, centered particularly on the presence or absence of presynaptically neurotoxic phospholipases A2 such as Mojave toxin (MTX). Interspecific hybridization has been invoked as a mechanism to explain the distribution of these toxins across rattlesnakes, with the implicit assumption that they are adaptively advantageous. Here, we test the potential of adaptive hybridization as a mechanism for venom evolution by assessing the distribution of genes encoding the acidic and basic subunits of Mojave toxin across a hybrid zone between MTX-positive Crotalus scutulatus and MTX-negative C. viridis in southwestern New Mexico, USA. Analyses of morphology, mitochondrial and single copy-nuclear genes document extensive admixture within a narrow hybrid zone. The genes encoding the two MTX subunits are strictly linked, and found in most hybrids and backcrossed individuals, but not in C. viridis away from the hybrid zone. Presence of the genes is invariably associated with presence of the corresponding toxin in the venom. We conclude that introgression of highly lethal neurotoxins through hybridization is not necessarily favored by natural selection in rattlesnakes, and that even extensive hybridization may not lead to introgression of these genes into another species.}, language = {en} } @article{CuiLvChenetal.2015, author = {Cui, Xiao and Lv, Yang and Chen, Miaolin and Nikoloski, Zoran and Twell, David and Zhang, Dabing}, title = {Young Genes out of the Male: An Insight from Evolutionary Age Analysis of the Pollen Transcriptome}, series = {Molecular plant}, volume = {8}, journal = {Molecular plant}, number = {6}, publisher = {Cell Press}, address = {Cambridge}, issn = {1674-2052}, doi = {10.1016/j.molp.2014.12.008}, pages = {935 -- 945}, year = {2015}, abstract = {The birth of new genes in genomes is an important evolutionary event. Several studies reveal that new genes in animals tend to be preferentially expressed in male reproductive tissues such as testis (Betran et al., 2002; Begun et al., 2007; Dubruille et al., 2012), and thus an "out of testis' hypothesis for the emergence of new genes has been proposed (Vinckenbosch et al., 2006; Kaessmann, 2010). However, such phenomena have not been examined in plant species. Here, by employing a phylostratigraphic method, we dated the origin of protein-coding genes in rice and Arabidopsis thaliana and observed a number of young genes in both species. These young genes tend to encode short extracellular proteins, which may be involved in rapid evolving processes, such as reproductive barriers, species specification, and antimicrobial processes. Further analysis of transcriptome age indexes across different tissues revealed that male reproductive cells express a phylogenetically younger transcriptome than other plant tissues. Compared with sporophytic tissues, the young transcriptomes of the male gametophyte displayed greater complexity and diversity, which included a higher ratio of anti-sense and inter-genic transcripts, reflecting a pervasive transcription state that facilitated the emergence of new genes. Here, we propose that pollen may act as an "innovation incubator' for the birth of de novo genes. With cases of male-biased expression of young genes reported in animals, the "new genes out of the male' model revealed a common evolutionary force that drives reproductive barriers, species specification, and the upgrading of defensive mechanisms against pathogens.}, language = {en} } @article{NguyenSchippersGoniRamosetal.2013, author = {Nguyen, Hung M. and Schippers, Jos H. M. and Goni-Ramos, Oscar and Christoph, Mathias P. and Dortay, Hakan and van der Hoorn, Renier A. L. and M{\"u}ller-R{\"o}ber, Bernd}, title = {An upstream regulator of the 26S proteasome modulates organ size in Arabidopsis thaliana}, series = {The plant journal}, volume = {74}, journal = {The plant journal}, number = {1}, publisher = {Wiley-Blackwell}, address = {Hoboken}, issn = {0960-7412}, doi = {10.1111/tpj.12097}, pages = {25 -- 36}, year = {2013}, abstract = {In both animal and plant kingdoms, body size is a fundamental but still poorly understood attribute of biological systems. Here we report that the Arabidopsis NAC transcription factor Regulator of Proteasomal Gene Expression' (RPX) controls leaf size by positively modulating proteasome activity. We further show that the cis-element recognized by RPX is evolutionarily conserved between higher plant species. Upon over-expression of RPX, plants exhibit reduced growth, which may be reversed by a low concentration of the pharmacological proteasome inhibitor MG132. These data suggest that the rate of protein turnover during growth is a critical parameter for determining final organ size.}, language = {en} }