@misc{Kleuser2018, author = {Kleuser, Burkhard}, title = {The enigma of sphingolipids in health and disease}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {1040}, issn = {1866-8372}, doi = {10.25932/publishup-47263}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-472637}, pages = {5}, year = {2018}, language = {en} } @misc{CastroWardelmannGruneetal.2018, author = {Castro, Jos{\´e} Pedro and Wardelmann, Kristina and Grune, Tilman and Kleinridders, Andr{\´e}}, title = {Mitochondrial chaperones in the brain}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {1031}, issn = {1866-8372}, doi = {10.25932/publishup-46065}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-460650}, pages = {15}, year = {2018}, abstract = {The brain orchestrates organ function and regulates whole body metabolism by the concerted action of neurons and glia cells in the central nervous system. To do so, the brain has tremendously high energy consumption and relies mainly on glucose utilization and mitochondrial function in order to exert its function. As a consequence of high rate metabolism, mitochondria in the brain accumulate errors over time, such as mitochondrial DNA (mtDNA) mutations, reactive oxygen species, and misfolded and aggregated proteins. Thus, mitochondria need to employ specific mechanisms to avoid or ameliorate the rise of damaged proteins that contribute to aberrant mitochondrial function and oxidative stress. To maintain mitochondria homeostasis (mitostasis), cells evolved molecular chaperones that shuttle, refold, or in coordination with proteolytic systems, help to maintain a low steady-state level of misfolded/aggregated proteins. Their importance is exemplified by the occurrence of various brain diseases which exhibit reduced action of chaperones. Chaperone loss (expression and/or function) has been observed during aging, metabolic diseases such as type 2 diabetes and in neurode-generative diseases such as Alzheimer's (AD), Parkinson's (PD) or even Huntington's (HD) diseases, where the accumulation of damage proteins is evidenced. Within this perspective, we propose that proper brain function is maintained by the joint action of mitochondrial chaperones to ensure and maintain mitostasis contributing to brain health, and that upon failure, alter brain function which can cause metabolic diseases.}, language = {en} } @misc{GiulbudagianYeallandHoenzkeetal.2018, author = {Giulbudagian, Michael and Yealland, Guy and H{\"o}nzke, Stefan and Edlich, Alexander and Geisend{\"o}rfer, Birte and Kleuser, Burkhard and Hedtrich, Sarah and Calder{\´o}n, Marcelo}, title = {Breaking the barrier}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {1030}, issn = {1866-8372}, doi = {10.25932/publishup-45930}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-459301}, pages = {450 -- 463}, year = {2018}, abstract = {Topical administration permits targeted, sustained delivery of therapeutics to human skin. Delivery to the skin, however, is typically limited to lipophilic molecules with molecular weight of < 500 Da, capable of crossing the stratum corneum. Nevertheless, there are indications protein delivery may be possible in barrier deficient skin, a condition found in several inflammatory skin diseases such as psoriasis, using novel nanocarrier systems. Methods: Water in water thermo-nanoprecipitation; dynamic light scattering; zeta potential measurement; nanoparticle tracking analysis; atomic force microscopy; cryogenic transmission electron microscopy; UV absorption; centrifugal separation membranes; bicinchoninic acid assay; circular dichroism; TNF alpha binding ELISA; inflammatory skin equivalent construction; human skin biopsies; immunohistochemistry; fluorescence microscopy; western blot; monocyte derived Langerhans cells; ELISA Results: Here, we report the novel synthesis of thermoresponsive nanogels (tNG) and the stable encapsulation of the anti-TNFa fusion protein etanercept (ETR) (similar to 150 kDa) without alteration to its structure, as well as temperature triggered release from the tNGs. Novel tNG synthesis without the use of organic solvents was conducted, permitting in situ encapsulation of protein during assembly, something that holds great promise for easy manufacture and storage. Topical application of ETR loaded tNGs to inflammatory skin equivalents or tape striped human skin resulted in efficient ETR delivery throughout the SC and into the viable epidermis that correlated with clear anti-inflammatory effects. Notably, effective ETR delivery depended on temperature triggered release following topical application. Conclusion: Together these results indicate tNGs hold promise as a biocompatible and easy to manufacture vehicle for stable protein encapsulation and topical delivery into barrier-deficient skin.}, language = {en} } @misc{SaguTchewonpiZimmermannLandgraeberetal.2020, author = {Sagu Tchewonpi, Sorel and Zimmermann, Lynn and Landgr{\"a}ber, Eva and Homann, Thomas and Huschek, Gerd and {\"O}zpinar, Haydar and Schweigert, Florian J. and Rawel, Harshadrai Manilal}, title = {Comprehensive Characterization and Relative Quantification of α-Amylase/Trypsin Inhibitors from Wheat Cultivars by Targeted HPLC-MS/MS}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {1028}, issn = {1866-8372}, doi = {10.25932/publishup-48611}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-486118}, pages = {27}, year = {2020}, abstract = {The α-amylase/trypsin inhibitors (ATIs) are discussed as being responsible for non-celiac wheat sensitivity (NCWS), besides being known as allergenic components for baker's asthma. Different approaches for characterization and quantification including proteomics-based methods for wheat ATIs have been documented. In these studies generally the major ATIs have been addressed. The challenge of current study was then to develop a more comprehensive workflow encompassing all reviewed wheat-ATI entries in UniProt database. To substantially test proof of concept, 46 German and Turkish wheat samples were used. Two extractions systems based on chloroform/methanol mixture (CM) and under buffered denaturing conditions were evaluated. Three aspects were optimized, tryptic digestion, chromatographic separation, and targeted tandem mass spectrometric analysis (HPLC-MS/MS). Preliminary characterization with sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) documented the purity of the extracted ATIs with CM mixture and the amylase (60-80\%)/trypsin (10-20\%) inhibition demonstrated the bifunctional activity of ATIs. Thirteen (individual/common) biomarkers were established. Major ATIs (7-34\%) were differently represented in samples. Finally, to our knowledge, the proposed HPLC-MS/MS method allowed for the first time so far the analysis of all 14 reviewed wheat ATI entries reported.}, language = {en} } @misc{WinkelbeinerWandtEbertetal.2020, author = {Winkelbeiner, Nicola Lisa and Wandt, Viktoria Klara Veronika and Ebert, Franziska and Lossow, Kristina and Bankoglu, Ezgi E. and Martin, Maximilian and Mangerich, Aswin and Stopper, Helga and Bornhorst, Julia and Kipp, Anna Patricia and Schwerdtle, Tanja}, title = {A Multi-Endpoint Approach to Base Excision Repair Incision Activity Augmented by PARylation and DNA Damage Levels in Mice}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {1021}, issn = {1866-8372}, doi = {10.25932/publishup-48483}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-484831}, pages = {21}, year = {2020}, abstract = {Investigation of processes that contribute to the maintenance of genomic stability is one crucial factor in the attempt to understand mechanisms that facilitate ageing. The DNA damage response (DDR) and DNA repair mechanisms are crucial to safeguard the integrity of DNA and to prevent accumulation of persistent DNA damage. Among them, base excision repair (BER) plays a decisive role. BER is the major repair pathway for small oxidative base modifications and apurinic/apyrimidinic (AP) sites. We established a highly sensitive non-radioactive assay to measure BER incision activity in murine liver samples. Incision activity can be assessed towards the three DNA lesions 8-oxo-2'-deoxyguanosine (8-oxodG), 5-hydroxy-2'-deoxyuracil (5-OHdU), and an AP site analogue. We applied the established assay to murine livers of adult and old mice of both sexes. Furthermore, poly(ADP-ribosyl)ation (PARylation) was assessed, which is an important determinant in DDR and BER. Additionally, DNA damage levels were measured to examine the overall damage levels. No impact of ageing on the investigated endpoints in liver tissue were found. However, animal sex seems to be a significant impact factor, as evident by sex-dependent alterations in all endpoints investigated. Moreover, our results revealed interrelationships between the investigated endpoints indicative for the synergetic mode of action of the cellular DNA integrity maintaining machinery.}, language = {en} } @misc{FigueroaCamposSaguTchewonpiSaraviaCelisetal.2020, author = {Figueroa Campos, Gustavo A. and Sagu Tchewonpi, Sorel and Saravia Celis, Pedro and Rawel, Harshadrai Manilal}, title = {Comparison of batch and continuous wet-processing of coffee}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch Naturwissenschaftliche Reihe}, number = {1010}, issn = {1866-8372}, doi = {10.25932/publishup-48169}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-481691}, pages = {21}, year = {2020}, abstract = {Many technical challenges still need to be overcome to improve the quality of the green coffee beans. In this work, the wet Arabica coffee processing in batch and continuous modus were investigated. Coffee beans samples as well as by-products and wastewaters collected at different production steps were analyzed in terms of their content in total phenols, antioxidant capacity, caffeine content, organic acids, reducing sugars, free amino group and protein content. The results showed that 40\% of caffeine was removed with pulp. Green coffee beans showed highest concentration of organic acids and sucrose (4.96 ± 0.25 and 5.07 ± 0.39 g/100 g DW for the batch and continuous processing). Batch green coffee beans contained higher amount of phenols. 5-caffeoylquinic Acid (5-CQA) was the main constituent (67.1 and 66.0\% for the batch and continuous processing, respectively). Protein content was 15 and 13\% in the green coffee bean in batch and continuous processing, respectively. A decrease of 50 to 64\% for free amino groups during processing was observed resulting in final amounts of 0.8 to 1.4\% in the processed beans. Finally, the batch processing still revealed by-products and wastewater with high nutrient content encouraging a better concept for valorization.}, language = {en} } @misc{MuellerDawczynskiWiestetal.2020, author = {M{\"u}ller, Sandra and Dawczynski, Christine and Wiest, Johanna and Lorkowski, Stefan and Kipp, Anna Patricia and Schwerdtle, Tanja}, title = {Functional Biomarkers for the Selenium Status in a Human Nutritional Intervention Study}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {878}, issn = {1866-8372}, doi = {10.25932/publishup-46011}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-460115}, pages = {16}, year = {2020}, abstract = {Soils in Germany are commonly low in selenium; consequently, a sufficient dietary supply is not always ensured. The extent of such provision adequacy is estimated by the optimal effect range of biomarkers, which often reflects the physiological requirement. Preceding epidemiological studies indicate that low selenium serum concentrations could be related to cardiovascular diseases. Inter alia, risk factors for cardiovascular diseases are physical inactivity, overweight, as well as disadvantageous eating habits. In order to assess whether these risk factors can be modulated, a cardio-protective diet comprising fixed menu plans combined with physical exercise was applied in the German MoKaRi (modulation of cardiovascular risk factors) intervention study. We analyzed serum samples of the MoKaRi cohort (51 participants) for total selenium, GPx activity, and selenoprotein P at different timepoints of the study (0, 10, 20, 40 weeks) to explore the suitability of these selenium-associated markers as indicators of selenium status. Overall, the time-dependent fluctuations in serum selenium concentration suggest a successful change in nutritional and lifestyle behavior. Compared to baseline, a pronounced increase in GPx activity and selenoprotein P was observed, while serum selenium decreased in participants with initially adequate serum selenium content. SELENOP concentration showed a moderate positive monotonic correlation (r = 0.467, p < 0.0001) to total Se concentration, while only a weak linear relationship was observed for GPx activity versus total Se concentration (r = 0.186, p = 0.021). Evidently, other factors apart from the available Se pool must have an impact on the GPx activity, leading to the conclusion that, without having identified these factors, GPx activity should not be used as a status marker for Se}, language = {en} } @misc{WittSchaumloeffelSchaumloeffeletal.2020, author = {Witt, Barbara and Schauml{\"o}ffel, Dirk and Schauml{\"o}ffel, Dirk and Schwerdtle, Tanja}, title = {Subcellular Localization of Copper}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {862}, issn = {1866-8372}, doi = {10.25932/publishup-45954}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-459544}, pages = {27}, year = {2020}, abstract = {As an essential trace element, copper plays a pivotal role in physiological body functions. In fact, dysregulated copper homeostasis has been clearly linked to neurological disorders including Wilson and Alzheimer's disease. Such neurodegenerative diseases are associated with progressive loss of neurons and thus impaired brain functions. However, the underlying mechanisms are not fully understood. Characterization of the element species and their subcellular localization is of great importance to uncover cellular mechanisms. Recent research activities focus on the question of how copper contributes to the pathological findings. Cellular bioimaging of copper is an essential key to accomplish this objective. Besides information on the spatial distribution and chemical properties of copper, other essential trace elements can be localized in parallel. Highly sensitive and high spatial resolution techniques such as LA-ICP-MS, TEM-EDS, S-XRF and NanoSIMS are required for elemental mapping on subcellular level. This review summarizes state-of-the-art techniques in the field of bioimaging. Their strengths and limitations will be discussed with particular focus on potential applications for the elucidation of copper-related diseases. Based on such investigations, further information on cellular processes and mechanisms can be derived under physiological and pathological conditions. Bioimaging studies might enable the clarification of the role of copper in the context of neurodegenerative diseases and provide an important basis to develop therapeutic strategies for reduction or even prevention of copper-related disorders and their pathological consequences.}, language = {en} } @misc{HenkelBuchheimDieckowCastroetal.2019, author = {Henkel, Janin and Buchheim-Dieckow, Katja and Castro, Jos{\´e} Pedro and Laeger, Thomas and Wardelmann, Kristina and Kleinridders, Andr{\´e} and J{\"o}hrens, Korinna and P{\"u}schel, Gerhard Paul}, title = {Reduced Oxidative Stress and Enhanced FGF21 Formation in Livers of Endurance-Exercised Rats with Diet-Induced NASH}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {807}, issn = {1866-8372}, doi = {10.25932/publishup-44238}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-442384}, pages = {17}, year = {2019}, abstract = {Non-alcoholic fatty liver diseases (NAFLD) including the severe form with steatohepatitis (NASH) are highly prevalent ailments to which no approved pharmacological treatment exists. Dietary intervention aiming at 10\% weight reduction is efficient but fails due to low compliance. Increase in physical activity is an alternative that improved NAFLD even in the absence of weight reduction. The underlying mechanisms are unclear and cannot be studied in humans. Here, a rat NAFLD model was developed that reproduces many facets of the diet-induced NAFLD in humans. The impact of endurance exercise was studied in this model. Male Wistar rats received control chow or a NASH-inducing diet rich in fat, cholesterol, and fructose. Both diet groups were subdivided into a sedentary and an endurance exercise group. Animals receiving the NASH-inducing diet gained more body weight, got glucose intolerant and developed a liver pathology with steatosis, hepatocyte hypertrophy, inflammation and fibrosis typical of NAFLD or NASH. Contrary to expectations, endurance exercise did not improve the NASH activity score and even enhanced hepatic inflammation. However, endurance exercise attenuated the hepatic cholesterol overload and the ensuing severe oxidative stress. In addition, exercise improved glucose tolerance possibly in part by induction of hepatic FGF21 production.}, language = {en} } @misc{SaguTchewonpiHuschekBoenicketal.2019, author = {Sagu Tchewonpi, Sorel and Huschek, Gerd and B{\"o}nick, Josephine and Homann, Thomas and Rawel, Harshadrai Manilal}, title = {A New Approach of Extraction of α-Amylase/trypsin Inhibitors from Wheat (Triticum aestivum L.), Based on Optimization Using Plackett-Burman and Box-Behnken Designs}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {805}, issn = {1866-8372}, doi = {10.25932/publishup-44222}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-442229}, pages = {20}, year = {2019}, abstract = {Wheat is one of the most consumed foods in the world and unfortunately causes allergic reactions which have important health effects. The α-amylase/trypsin inhibitors (ATIs) have been identified as potentially allergen components of wheat. Due to a lack of data on optimization of ATI extraction, a new wheat ATIs extraction approach combining solvent extraction and selective precipitation is proposed in this work. Two types of wheat cultivars (Triticum aestivum L.), Julius and Ponticus were used and parameters such as solvent type, extraction time, temperature, stirring speed, salt type, salt concentration, buffer pH and centrifugation speed were analyzed using the Plackett-Burman design. Salt concentration, extraction time and pH appeared to have significant effects on the recovery of ATIs (p < 0.01). In both wheat cultivars, Julius and Ponticus, ammonium sulfate substantially reduced protein concentration and inhibition of amylase activity (IAA) compared to sodium chloride. The optimal conditions with desirability levels of 0.94 and 0.91 according to the Doehlert design were: salt concentrations of 1.67 and 1.22 M, extraction times of 53 and 118 min, and pHs of 7.1 and 7.9 for Julius and Ponticus, respectively. The corresponding responses were: protein concentrations of 0.31 and 0.35 mg and IAAs of 91.6 and 83.3\%. Electrophoresis and MALDI-TOF/MS analysis showed that the extracted ATIs masses were between 10 and 20 kDa. Based on the initial LC-MS/MS analysis, up to 10 individual ATIs were identified in the extracted proteins under the optimal conditions. The positive implication of the present study lies in the quick assessment of their content in different varieties especially while considering their allergenic potential.}, language = {en} } @misc{HassHerpichNorman2019, author = {Haß, Ulrike and Herpich, Catrin and Norman, Kristina}, title = {Anti-Inflammatory Diets and Fatigue}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {803}, issn = {1866-8372}, doi = {10.25932/publishup-44117}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-441172}, pages = {26}, year = {2019}, abstract = {Accumulating data indicates a link between a pro-inflammatory status and occurrence of chronic disease-related fatigue. The questions are whether the observed inflammatory profile can be (a) improved by anti-inflammatory diets, and (b) if this improvement can in turn be translated into a significant fatigue reduction. The aim of this narrative review was to investigate the effect of anti-inflammatory nutrients, foods, and diets on inflammatory markers and fatigue in various patient populations. Next to observational and epidemiological studies, a total of 21 human trials have been evaluated in this work. Current available research is indicative, rather than evident, regarding the effectiveness of individuals' use of single nutrients with anti-inflammatory and fatigue-reducing effects. In contrast, clinical studies demonstrate that a balanced diet with whole grains high in fibers, polyphenol-rich vegetables, and omega-3 fatty acid-rich foods might be able to improve disease-related fatigue symptoms. Nonetheless, further research is needed to clarify conflicting results in the literature and substantiate the promising results from human trials on fatigue.}, language = {en} } @misc{WiggerGulbinsKleuseretal.2019, author = {Wigger, Dominik and Gulbins, Erich and Kleuser, Burkhard and Schumacher, Fabian}, title = {Monitoring the Sphingolipid de novo Synthesis by Stable-Isotope Labeling and Liquid Chromatography-Mass Spectrometry}, series = {Postprints der Universit{\"a}t Potsdam Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam Mathematisch-Naturwissenschaftliche Reihe}, number = {800}, issn = {1866-8372}, doi = {10.25932/publishup-44115}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-441158}, pages = {16}, year = {2019}, abstract = {Sphingolipids are a class of lipids that share a sphingoid base backbone. They exert various effects in eukaryotes, ranging from structural roles in plasma membranes to cellular signaling. De novo sphingolipid synthesis takes place in the endoplasmic reticulum (ER), where the condensation of the activated C₁₆ fatty acid palmitoyl-CoA and the amino acid L-serine is catalyzed by serine palmitoyltransferase (SPT). The product, 3-ketosphinganine, is then converted into more complex sphingolipids by additional ER-bound enzymes, resulting in the formation of ceramides. Since sphingolipid homeostasis is crucial to numerous cellular functions, improved assessment of sphingolipid metabolism will be key to better understanding several human diseases. To date, no assay exists capable of monitoring de novo synthesis sphingolipid in its entirety. Here, we have established a cell-free assay utilizing rat liver microsomes containing all the enzymes necessary for bottom-up synthesis of ceramides. Following lipid extraction, we were able to track the different intermediates of the sphingolipid metabolism pathway, namely 3-ketosphinganine, sphinganine, dihydroceramide, and ceramide. This was achieved by chromatographic separation of sphingolipid metabolites followed by detection of their accurate mass and characteristic fragmentations through high-resolution mass spectrometry and tandem-mass spectrometry. We were able to distinguish, unequivocally, between de novo synthesized sphingolipids and intrinsic species, inevitably present in the microsome preparations, through the addition of stable isotope-labeled palmitate-d₃ and L-serine-d₃. To the best of our knowledge, this is the first demonstration of a method monitoring the entirety of ER-associated sphingolipid biosynthesis. Proof-of-concept data was provided by modulating the levels of supplied cofactors (e.g., NADPH) or the addition of specific enzyme inhibitors (e.g., fumonisin B₁). The presented microsomal assay may serve as a useful tool for monitoring alterations in sphingolipid de novo synthesis in cells or tissues. Additionally, our methodology may be used for metabolism studies of atypical substrates - naturally occurring or chemically tailored - as well as novel inhibitors of enzymes involved in sphingolipid de novo synthesis.}, language = {en} } @misc{HenkelColemanMacGregorofInneregnySchraplauetal.2018, author = {Henkel, Janin and Coleman Mac Gregor of Inneregny, Charles Dominic and Schraplau, Anne and J{\"o}hrens, Korinna and Weiss, Thomas Siegfried and Jonas, Wenke and Sch{\"u}rmann, Annette and P{\"u}schel, Gerhard Paul}, title = {Augmented liver inflammation in a microsomal prostaglandin E synthase 1 (mPGES-1)-deficient diet-induced mouse NASH model}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {483}, issn = {1866-8372}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-420879}, pages = {11}, year = {2018}, abstract = {In a subset of patients, non-alcoholic fatty liver disease (NAFLD) is complicated by cell death and inflammation resulting in non-alcoholic steatohepatitis (NASH), which may progress to fibrosis and subsequent organ failure. Apart from cytokines, prostaglandins, in particular prostaglandin E-2 (PGE(2)), play a pivotal role during inflammatory processes. Expression of the key enzymes of PGE(2) synthesis, cyclooxygenase 2 and microsomal PGE synthase 1 (mPGES-1), was increased in human NASH livers in comparison to controls and correlated with the NASH activity score. Both enzymes were also induced in NASH-diet-fed wild-type mice, resulting in an increase in hepatic PGE(2) concentration that was completely abrogated in mPGES-1-deficient mice. PGE(2) is known to inhibit TNF-alpha synthesis in macrophages. A strong infiltration of monocyte-derived macrophages was observed in NASH-diet-fed mice, which was accompanied with an increase in hepatic TNF-alpha expression. Due to the impaired PGE(2) production, TNF-alpha expression increased much more in livers of mPGES-1-deficient mice or in the peritoneal macrophages of these mice. The increased levels of TNF-alpha resulted in an enhanced IL-1 beta production, primarily in hepatocytes, and augmented hepatocyte apoptosis. In conclusion, attenuation of PGE(2) production by mPGES-1 ablation enhanced the TNF-alpha-triggered inflammatory response and hepatocyte apoptosis in diet-induced NASH.}, language = {en} } @misc{HenkelAlfineSainetal.2018, author = {Henkel, Janin and Alfine, Eugenia and Sa{\´i}n, Juliana and J{\"o}hrens, Korinna and Weber, Daniela and Castro, Jos{\´e} Pedro and K{\"o}nig, Jeannette and Stuhlmann, Christin and Vahrenbrink, Madita and Jonas, Wenke and Kleinridders, Andr{\´e} and P{\"u}schel, Gerhard Paul}, title = {Soybean Oil-Derived Poly-Unsaturated Fatty Acids Enhance Liver Damage in NAFLD Induced by Dietary Cholesterol}, series = {Nutrients}, journal = {Nutrients}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-419773}, pages = {17}, year = {2018}, abstract = {While the impact of dietary cholesterol on the progression of atherosclerosis has probably been overestimated, increasing evidence suggests that dietary cholesterol might favor the transition from blunt steatosis to non-alcoholic steatohepatitis (NASH), especially in combination with high fat diets. It is poorly understood how cholesterol alone or in combination with other dietary lipid components contributes to the development of lipotoxicity. The current study demonstrated that liver damage caused by dietary cholesterol in mice was strongly enhanced by a high fat diet containing soybean oil-derived ω6-poly-unsaturated fatty acids (ω6-PUFA), but not by a lard-based high fat diet containing mainly saturated fatty acids. In contrast to the lard-based diet the soybean oil-based diet augmented cholesterol accumulation in hepatocytes, presumably by impairing cholesterol-eliminating pathways. The soybean oil-based diet enhanced cholesterol-induced mitochondrial damage and amplified the ensuing oxidative stress, probably by peroxidation of poly-unsaturated fatty acids. This resulted in hepatocyte death, recruitment of inflammatory cells, and fibrosis, and caused a transition from steatosis to NASH, doubling the NASH activity score. Thus, the recommendation to reduce cholesterol intake, in particular in diets rich in ω6-PUFA, although not necessary to reduce the risk of atherosclerosis, might be sensible for patients suffering from non-alcoholic fatty liver disease.}, language = {en} } @misc{PatheNeuschaeferRubeNeuschaeferRubeHaasetal.2018, author = {Pathe-Neusch{\"a}fer-Rube, Andrea and Neusch{\"a}fer-Rube, Frank and Haas, Gerald and Langoth-Fehringer, Nina and P{\"u}schel, Gerhard Paul}, title = {Cell-Based Reporter Release Assay to Determine the Potency of Proteolytic Bacterial Neurotoxins}, series = {Toxins}, journal = {Toxins}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-418141}, pages = {10}, year = {2018}, abstract = {Despite the implementation of cell-based replacement methods, the mouse lethality assay is still frequently used to determine the activity of botulinum toxin (BoNT) for medical use. One explanation is that due to the use of neoepitope-specific antibodies to detect the cleaved BoNT substrate, the currently devised assays can detect only one specific serotype of the toxin. Recently, we developed a cell-based functional assay, in which BoNT activity is determined by inhibiting the release of a reporter enzyme that is liberated concomitantly with the neurotransmitter from neurosecretory vesicles. In theory, this assay should be suitable to detect the activity of any BoNT serotype. Consistent with this assumption, the current study shows that the stimulus-dependent release of a luciferase from a differentiated human neuroblastoma-based reporter cell line (SIMA-hPOMC1-26-GLuc cells) was inhibited by BoNT-A and-C. Furthermore, this was also inhibited by BoNT-B and tetanus toxin to a lesser extent and at higher concentrations. In order to provide support for the suitability of this technique in practical applications, a dose-response curve obtained with a pharmaceutical preparation of BoNT-A closely mirrored the activity determined in the mouse lethality assay. In summary, the newly established cell-based assay may represent a versatile and specific alternative to the mouse lethality assay and other currently established cell-based assays.}, language = {en} } @misc{BaldermannHomannNeugartetal.2018, author = {Baldermann, Susanne and Homann, Thomas and Neugart, Susanne and Chmielewski, Frank M. and G{\"o}tz, Klaus-Peter and G{\"o}deke, Kristin and Huschek, Gerd and Morlock, Gertrud E. and Rawel, Harshadrai Manilal}, title = {Selected Plant Metabolites Involved in Oxidation-Reduction Processes during Bud Dormancy and Ontogenetic Development in Sweet Cherry Buds (Prunus avium L.)}, series = {Molecules}, journal = {Molecules}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-417442}, pages = {19}, year = {2018}, abstract = {Many biochemical processes are involved in regulating the consecutive transition of different phases of dormancy in sweet cherry buds. An evaluation based on a metabolic approach has, as yet, only been partly addressed. The aim of this work, therefore, was to determine which plant metabolites could serve as biomarkers for the different transitions in sweet cherry buds. The focus here was on those metabolites involved in oxidation-reduction processes during bud dormancy, as determined by targeted and untargeted mass spectrometry-based methods. The metabolites addressed included phenolic compounds, ascorbate/dehydroascorbate, reducing sugars, carotenoids and chlorophylls. The results demonstrate that the content of phenolic compounds decrease until the end of endodormancy. After a long period of constancy until the end of ecodormancy, a final phase of further decrease followed up to the phenophase open cluster. The main phenolic compounds were caffeoylquinic acids, coumaroylquinic acids and catechins, as well as quercetin and kaempferol derivatives. The data also support the protective role of ascorbate and glutathione in the para- and endodormancy phases. Consistent trends in the content of reducing sugars can be elucidated for the different phenophases of dormancy, too. The untargeted approach with principle component analysis (PCA) clearly differentiates the different timings of dormancy giving further valuable information.}, language = {en} } @misc{ErrardUlrichsKuehneetal.2016, author = {Errard, Audrey and Ulrichs, Christian and K{\"u}hne, Stefan and Mewis, Inga and Mishig, Narantuya and Maul, Ronald and Drungowski, Mario and Parolin, Pia and Schreiner, Monika and Baldermann, Susanne}, title = {Metabolite profiling reveals a specific response in tomato to predaceous Chrysoperla carnea larvae and herbivore(s)-predator interactions with the generalist pests Tetranychus urticae and Myzus persicae}, series = {Frontiers in plant science}, journal = {Frontiers in plant science}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-407913}, pages = {14}, year = {2016}, abstract = {The spider mite Tetranychus urticae Koch and the aphid Myzus persicae (Sulzer) both infest a number of economically significant crops, including tomato (Solanurn lycopersicum). Although used for decades to control pests, the impact of green lacewing larvae Chrysoperla carnea (Stephens) on plant biochemistry was not investigated. Here, we used profiling methods and targeted analyses to explore the impact of the predator and herbivore(s)-predator interactions on tomato biochemistry. Each pest and pest -predator combination induced a characteristic metabolite signature in the leaf and the fruit thus, the plant exhibited a systemic response. The treatments had a stronger impact on non-volatile metabolites including abscisic acid and amino acids in the leaves in comparison with the fruits. In contrast, the various biotic factors had a greater impact on the carotenoids in the fruits. We identified volatiles such as myrcene and alpha-terpinene which were induced by pest -predator interactions but not by single species, and we demonstrated the involvement of the phytohormone abscisic acid in tritrophic interactions for the first time. More importantly, C. carnea larvae alone impacted the plant metabolome, but the predator did not appear to elicit particular defense pathways on its own. Since the presence of both C. carnea larvae and pest individuals elicited volatiles which were shown to contribute to plant defense, C. carnea larvae could therefore contribute to the reduction of pest infestation, not only by its preying activity, but also by priming responses to generalist herbivores such as T urticae and M. persicae. On the other hand, the use of C. carnea larvae alone did not impact carotenoids thus, was not prejudicial to the fruit quality. The present piece of research highlights the specific impact of predator and tritrophic interactions with green lacewing larvae, spider mites, and aphids on different components of the tomato primary and secondary metabolism for the first time, and provides cues for further in-depth studies aiming to integrate entomological approaches and plant biochemistry.}, language = {en} } @misc{StuetzWeberDolleetal.2016, author = {Stuetz, Wolfgang and Weber, Daniela and Doll{\´e}, Martijn E. T. and Jansen, Eug{\`e}ne and Grubeck-Loebenstein, Beatrix and Fiegl, Simone and Toussaint, Olivier and Bernhardt, Juergen and Gonos, Efstathios S. and Franceschi, Claudio and Sikora, Ewa and Moreno-Villanueva, Mar{\´i}a and Breusing, Nicolle and Grune, Tilman and B{\"u}rkle, Alexander}, title = {Plasma carotenoids, tocopherols, and retinol in the age-stratified (35-74 years) general population}, series = {Nutrients}, journal = {Nutrients}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-407659}, pages = {17}, year = {2016}, abstract = {Blood micronutrient status may change with age. We analyzed plasma carotenoids, α-/γ-tocopherol, and retinol and their associations with age, demographic characteristics, and dietary habits (assessed by a short food frequency questionnaire) in a cross-sectional study of 2118 women and men (age-stratified from 35 to 74 years) of the general population from six European countries. Higher age was associated with lower lycopene and α-/β-carotene and higher β-cryptoxanthin, lutein, zeaxanthin, α-/γ-tocopherol, and retinol levels. Significant correlations with age were observed for lycopene (r = -0.248), α-tocopherol (r = 0.208), α-carotene (r = -0.112), and β-cryptoxanthin (r = 0.125; all p < 0.001). Age was inversely associated with lycopene (-6.5\% per five-year age increase) and this association remained in the multiple regression model with the significant predictors (covariables) being country, season, cholesterol, gender, smoking status, body mass index (BMI (kg/m2)), and dietary habits. The positive association of α-tocopherol with age remained when all covariates including cholesterol and use of vitamin supplements were included (1.7\% vs. 2.4\% per five-year age increase). The association of higher β-cryptoxanthin with higher age was no longer statistically significant after adjustment for fruit consumption, whereas the inverse association of α-carotene with age remained in the fully adjusted multivariable model (-4.8\% vs. -3.8\% per five-year age increase). We conclude from our study that age is an independent predictor of plasma lycopene, α-tocopherol, and α-carotene.}, language = {en} } @misc{WotingBlaut2016, author = {Woting, Anni and Blaut, Michael}, title = {The intestinal microbiota in metabolic disease}, series = {Nutrients}, journal = {Nutrients}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-407687}, pages = {19}, year = {2016}, abstract = {Gut bacteria exert beneficial and harmful effects in metabolic diseases as deduced from the comparison of germfree and conventional mice and from fecal transplantation studies. Compositional microbial changes in diseased subjects have been linked to adiposity, type 2 diabetes and dyslipidemia. Promotion of an increased expression of intestinal nutrient transporters or a modified lipid and bile acid metabolism by the intestinal microbiota could result in an increased nutrient absorption by the host. The degradation of dietary fiber and the subsequent fermentation of monosaccharides to short-chain fatty acids (SCFA) is one of the most controversially discussed mechanisms of how gut bacteria impact host physiology. Fibers reduce the energy density of the diet, and the resulting SCFA promote intestinal gluconeogenesis, incretin formation and subsequently satiety. However, SCFA also deliver energy to the host and support liponeogenesis. Thus far, there is little knowledge on bacterial species that promote or prevent metabolic disease. Clostridium ramosum and Enterococcus cloacae were demonstrated to promote obesity in gnotobiotic mouse models, whereas bifidobacteria and Akkermansia muciniphila were associated with favorable phenotypes in conventional mice, especially when oligofructose was fed. How diet modulates the gut microbiota towards a beneficial or harmful composition needs further research. Gnotobiotic animals are a valuable tool to elucidate mechanisms underlying diet-host-microbe interactions.}, language = {en} } @misc{AvilaBenedettoAuetal.2016, author = {Avila, Daiana Silva and Benedetto, Alexandre and Au, Catherine and Bornhorst, Julia and Aschner, Michael A.}, title = {Involvement of heat shock proteins on Mn-induced toxicity in Caenorhabditis elegans}, series = {BMC pharmacology and toxicology}, journal = {BMC pharmacology and toxicology}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-407286}, pages = {9}, year = {2016}, abstract = {Background: All living cells display a rapid molecular response to adverse environmental conditions, and the heat shock protein family reflects one such example. Hence, failing to activate heat shock proteins can impair the cellular response. In the present study, we evaluated whether the loss of different isoforms of heat shock protein ( hsp ) genes in Caenorhabditis elegans would affect their vulnerability to Manganese (Mn) toxicity. Methods: We exposed wild type and selected hsp mutant worms to Mn (30 min) and next evaluated further the most susceptible strains. We analyzed survi val, protein carbonylation (as a marker of oxidative stress) and Parkinson ' s disease related gene expression immediately after Mn exposure. Lastly, we observed dopaminergic neurons in wild type worms and in hsp-70 mutants following Mn treatment. Analysis of the data was performed by one-way or two way ANOVA, depending on the case, followed by post-hoc Bonferroni test if the overall p value was less than 0.05. Results: We verified that the loss of hsp-70, hsp-3 and chn-1 increased the vulnerability to Mn, as exposed mutant worms showed lower survival rate and increased protein oxidation. The importance of hsp-70 against Mn toxicity was then corroborated in dopaminergic neurons, where Mn neurotoxicity was aggravated. The lack of hsp-70 also blocked the transcriptional upregulation of pink1 , a gene that has been linked to Parkinson ' sdisease. Conclusions: Taken together, our data suggest that Mn exposu re modulates heat shock protein expression, particularly HSP-70, in C. elegans .Furthermore,lossof hsp-70 increases protein oxidation and dopaminergic neuronal degeneration following manganese exposure, which is associated with the inhibition of pink1 increased expression, thus pot entially exacerbating the v ulnerability to this metal.}, language = {en} }