@article{SteinkeOskinovaHamannetal.2016, author = {Steinke, Martin and Oskinova, Lidia M. and Hamann, Wolf-Rainer and Sander, Andreas Alexander Christoph and Liermann, A. and Todt, Helge Tobias}, title = {Analysis of the WN star WR102c, its WR nebula, and the associated cluster of massive stars in the Sickle Nebula}, series = {Tectonophysics : international journal of geotectonics and the geology and physics of the interior of the earth}, volume = {588}, journal = {Tectonophysics : international journal of geotectonics and the geology and physics of the interior of the earth}, publisher = {EDP Sciences}, address = {Les Ulis}, issn = {1432-0746}, doi = {10.1051/0004-6361/201527692}, pages = {10}, year = {2016}, abstract = {Context. The massive Wolf-Rayet type star WR102c is located near the Quintuplet Cluster, one of the three massive star clusters in the Galactic centre region. Previous studies indicated that WR102c may have a dusty circumstellar nebula and is among the main ionising sources of the Sickle Nebula associated with the Quintuplet Cluster. Aims. The goals of our study are to derive the stellar parameters of WR102c from the analysis of its spectrum and to investigate its stellar and nebular environment. Methods. We obtained observations with the ESO VLT integral field spectrograph SINFONI in the K-band, extracted the stellar spectra, and analysed them by means of stellar atmosphere models. Results. Our new analysis supersedes the results previously reported for WR102c. We significantly decrease its bolometric luminosity and hydrogen content. We detect four early OB type stars close to WR102c. These stars have radial velocities similar to that of WR102c. We suggest that together with WR102c these stars belong to a distinct star cluster with a total mass of similar to 1000 M-circle dot. We identify a new WR nebula around WR102c in the SINFONI map of the di ff use Br gamma emission and in the HST Pa ff images. The Br gamma line at di ff erent locations is not significantly broadened and similar to the width of nebular emission elsewhere in the H i i region around WR102c. Conclusions. The massive star WR102c located in the Galactic centre region resides in a star cluster containing additional early-type stars. The stellar parameters of WR102c are typical for hydrogen-free WN6 stars. We identify a nebula surrounding WR102c that has a morphology similar to other nebulae around hydrogen-free WR stars, and propose that the formation of this nebula is linked to interaction of the fast stellar wind with the matter ejected at a previous evolutionary stage of WR102c.}, language = {en} } @article{HubrigScholzHamannetal.2016, author = {Hubrig, Swetlana and Scholz, Kathleen and Hamann, Wolf-Rainer and Schoeller, M. and Ignace, R. and Ilyin, Ilya and Gayley, K. G. and Oskinova, Lidia M.}, title = {Searching for a magnetic field in Wolf-Rayet stars using FORS 2 spectropolarimetry}, series = {Monthly notices of the Royal Astronomical Society}, volume = {458}, journal = {Monthly notices of the Royal Astronomical Society}, publisher = {Oxford Univ. Press}, address = {Oxford}, issn = {0035-8711}, doi = {10.1093/mnras/stw558}, pages = {3381 -- 3393}, year = {2016}, abstract = {To investigate if magnetic fields are present in Wolf-Rayet stars, we selected a few stars in the Galaxy and one in the Large Magellanic Cloud (LMC). We acquired low-resolution spectropolarimetric observations with the European Southern Observatory FORS 2 (FOcal Reducer low dispersion Spectrograph) instrument during two different observing runs. During the first run in visitor mode, we observed the LMC Wolf-Rayet star BAT99 7 and the stars WR 6, WR 7, WR 18, and WR 23 in our Galaxy. The second run in service mode was focused on monitoring the star WR 6. Linear polarization was recorded immediately after the observations of circular polarization. During our visitor observing run, the magnetic field for the cyclically variable star WR 6 was measured at a significance level of 3.3 sigma (< B-z > = 258 +/- 78 G). Among the other targets, the highest value for the longitudinal magnetic field, < B-z > = 327 +/- 141 G, was measured in the LMC star BAT99 7. Spectropolarimetric monitoring of the star WR 6 revealed a sinusoidal nature of the < B-z > variations with the known rotation period of 3.77 d, significantly adding to the confidence in the detection. The presence of the rotation-modulated magnetic variability is also indicated in our frequency periodogram. The reported field magnitude suffers from significant systematic uncertainties at the factor of 2 level, in addition to the quoted statistical uncertainties, owing to the theoretical approach used to characterize it. Linear polarization measurements showed no line effect in the stars, apart from WR 6. BAT99 7, WR 7, and WR 23 do not show variability of the linear polarization over two nights.}, language = {en} } @article{ShenarHainichTodtetal.2016, author = {Shenar, Tomer and Hainich, Rainer and Todt, Helge Tobias and Sander, Andreas Alexander Christoph and Hamann, Wolf-Rainer and Moffat, Anthony F. J. and Eldridge, J. J. and Pablo, H. and Oskinova, Lidia M. and Richardson, N. D.}, title = {Wolf-Rayet stars in the Small Magellanic Cloud II. Analysis of the binaries}, series = {American mineralogist : an international journal of earth and planetary materials}, volume = {591}, journal = {American mineralogist : an international journal of earth and planetary materials}, publisher = {EDP Sciences}, address = {Les Ulis}, issn = {1432-0746}, doi = {10.1051/0004-6361/201527916}, pages = {25}, year = {2016}, abstract = {Context. Massive Wolf-Rayet (WR) stars are evolved massive stars (M-i greater than or similar to 20 M-circle dot) characterized by strong mass-loss. Hypothetically, they can form either as single stars or as mass donors in close binaries. About 40\% of all known WR stars are confirmed binaries, raising the question as to the impact of binarity on the WR population. Studying WR binaries is crucial in this context, and furthermore enable one to reliably derive the elusive masses of their components, making them indispensable for the study of massive stars. Aims. By performing a spectral analysis of all multiple WR systems in the Small Magellanic Cloud (SMC), we obtain the full set of stellar parameters for each individual component. Mass-luminosity relations are tested, and the importance of the binary evolution channel is assessed. Methods. The spectral analysis is performed with the PotsdamWolf-Rayet (PoWR) model atmosphere code by superimposing model spectra that correspond to each component. Evolutionary channels are constrained using the Binary Population and Spectral Synthesis (BPASS) evolution tool. Results. Significant hydrogen mass fractions (0.1 < X-H < 0.4) are detected in all WN components. A comparison with mass-luminosity relations and evolutionary tracks implies that the majority of the WR stars in our sample are not chemically homogeneous. The WR component in the binary AB6 is found to be very luminous (log L approximate to 6.3 [L-circle dot]) given its orbital mass (approximate to 10 M-circle dot), presumably because of observational contamination by a third component. Evolutionary paths derived for our objects suggest that Roche lobe overflow had occurred in most systems, affecting their evolution. However, the implied initial masses (greater than or similar to 60 M-circle dot) are large enough for the primaries to have entered the WR phase, regardless of binary interaction. Conclusions. Together with the results for the putatively single SMC WR stars, our study suggests that the binary evolution channel does not dominate the formation of WR stars at SMC metallicity.}, language = {en} } @article{GimenezGarciaShenarTorrejonetal.2016, author = {Gimenez-Garcia, Ana and Shenar, Tomer and Torrejon, J. M. and Oskinova, Lidia M. and Martinez-Nunez, S. and Hamann, Wolf-Rainer and Rodes-Roca, J. J. and Gonz{\´a}lez-Galan, A. and Alonso-Santiago, J. and Gonz{\´a}lez-Fern{\´a}ndez, C. and Bernabeu, Guillermo and Sander, Andreas Alexander Christoph}, title = {Measuring the stellar wind parameters in IGR J17544-2619 and Vela X-1 constrains the accretion physics in supergiant fast X-ray transient and classical supergiant X-ray binaries}, series = {Siberian Mathematical Journal}, volume = {591}, journal = {Siberian Mathematical Journal}, publisher = {EDP Sciences}, address = {Les Ulis}, issn = {1432-0746}, doi = {10.1051/0004-6361/201527551}, pages = {25}, year = {2016}, abstract = {Aims. To close this gap, we perform a comparative analysis of the optical companion in two important systems: IGR J175442619 (SFXT) and Vela X-1 (SGXB). We analyze the spectra of each star in detail and derive their stellar and wind properties. As a next step, we compare the wind parameters, giving us an excellent chance of recognizing key differences between donor winds in SFXTs and SGXBs. Methods. We use archival infrared, optical and ultraviolet observations, and analyze them with the non-local thermodynamic equilibrium (NLTE) Potsdam Wolf-Rayet model atmosphere code. We derive the physical properties of the stars and their stellar winds, accounting for the influence of X-rays on the stellar winds. Results. We find that the stellar parameters derived from the analysis generally agree well with the spectral types of the two donors: O9I (IGR J17544-2619) and B0.5Iae (Vela X-1). The distance to the sources have been revised and also agree well with the estimations already available in the literature. In IGR J17544-2619 we are able to narrow the uncertainty to d = 3.0 +/- 0.2 kpc. From the stellar radius of the donor and its X-ray behavior, the eccentricity of IGR J17544-2619 is constrained to e < 0.25. The derived chemical abundances point to certain mixing during the lifetime of the donors. An important difference between the stellar winds of the two stars is their terminal velocities (v(infinity) = 1500 km s(-1) in IGR J17544-2619 and v(infinity) = 700 km s(-1) in Vela X-1), which have important consequences on the X-ray luminosity of these sources. Conclusions. The donors of IGR J17544-2619 and Vela X-1 have similar spectral types as well as similar parameters that physically characterize them and their spectra. In addition, the orbital parameters of the systems are similar too, with a nearly circular orbit and short orbital period. However, they show moderate differences in their stellar wind velocity and the spin period of their neutron star which has a strong impact on the X-ray luminosity of the sources. This specific combination of wind speed and pulsar spin favors an accretion regime with a persistently high luminosity in Vela X-1, while it favors an inhibiting accretion mechanism in IGR J17544-2619. Our study demonstrates that the relative wind velocity is critical in class determination for the HMXBs hosting a supergiant donor, given that it may shift the accretion mechanism from direct accretion to propeller regimes when combined with other parameters.}, language = {en} } @article{OskinovaKubatovaHamann2016, author = {Oskinova, Lidia M. and Kubatova, Brankica and Hamann, Wolf-Rainer}, title = {Moving inhomogeneous envelopes of stars}, series = {Transport in Porous Media}, volume = {183}, journal = {Transport in Porous Media}, publisher = {Elsevier}, address = {Oxford}, issn = {0022-4073}, doi = {10.1016/j.jqsrt.2016.06.017}, pages = {100 -- 112}, year = {2016}, abstract = {Massive stars are extremely luminous and drive strong winds, blowing a large part of their matter into the galactic environment before they finally explode as a supernova. Quantitative knowledge of massive star feedback is required to understand our Universe as we see it. Traditionally, massive stars have been studied under the assumption that their winds are homogeneous and stationary, largely relying on the Sobolev approximation. However, Observations with the newest instruments, together with progress in model calculations, ultimately dictate a cardinal change of this paradigm: stellar winds are highly inhomogeneous. Hence, we are now advancing to a new stage in our understanding of stellar winds. Using the foundations laid by V.V. Sobolev and his school, we now update and further develop the stellar spectral analysis techniques. New sophisticated 3-D models of radiation transfer in inhomogeneous expanding media elucidate the physics of stellar winds and improve classical empiric mass-loss rate diagnostics. Applications of these new techniques to multiwavelength observations of massive stars yield consistent and robust stellar wind parameters. (C) 2016 Elsevier Ltd. All rights reserved.}, language = {en} } @article{ToalaGuerreroTodtetal.2015, author = {Toala, Jes{\´u}s Alberto and Guerrero, Mart{\´i}n A. and Todt, Helge Tobias and Hamann, Wolf-Rainer and Chu, Y.-H. and Gruendl, R. A. and Sch{\"o}nberner, Detlef and Oskinova, Lidia M. and Marquez-Lugo, R. A. and Fang, X. and Ramos-Larios, Gerardo}, title = {The born-again Planetary nebula A78: an X-RAY twin of A30}, series = {The astrophysical journal : an international review of spectroscopy and astronomical physics}, volume = {799}, journal = {The astrophysical journal : an international review of spectroscopy and astronomical physics}, number = {1}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, issn = {0004-637X}, doi = {10.1088/0004-637X/799/1/67}, pages = {10}, year = {2015}, abstract = {We present the XMM-Newton discovery of X-ray emission from the planetary nebula (PN) A78, the second born-again PN detected in X-rays apart from A30. These two PNe share similar spectral and morphological characteristics: they harbor diffuse soft X-ray emission associated with the interaction between the H-poor ejecta and the current fast stellar wind and a point-like source at the position of the central star (CSPN). We present the spectral analysis of the CSPN, using for the first time an NLTE code for expanding atmospheres that takes line blanketing into account for the UV and optical spectra. The wind abundances are used for the X-ray spectral analysis of the CSPN and the diffuse emission. The X-ray emission from the CSPN in A78 can be modeled by a single C VI emission line, while the X-ray emission from its diffuse component is better described by an optically thin plasma emission model with a temperature of kT = 0.088 keV (T approximate to 1.0 x 10(6) K). We estimate X-ray luminosities in the 0.2-2.0 keV energy band of L-X,L-CSPN =(1.2 +/- 0.3) x 10(31) erg s(-1) and L-X,L-DIFF =(9.2 +/- 2.3) x 10(30) erg s(-1) for the CSPN and diffuse components, respectively.}, language = {en} } @article{SanderShenarHainichetal.2015, author = {Sander, Andreas Alexander Christoph and Shenar, Tomer and Hainich, Rainer and Gimenez-Garcia, Ana and Todt, Helge Tobias and Hamann, Wolf-Rainer}, title = {On the consistent treatment of the quasi-hydrostatic layers in hot star atmospheres}, series = {Astronomy and astrophysics : an international weekly journal}, volume = {577}, journal = {Astronomy and astrophysics : an international weekly journal}, publisher = {EDP Sciences}, address = {Les Ulis}, issn = {0004-6361}, doi = {10.1051/0004-6361/201425356}, pages = {13}, year = {2015}, abstract = {Context. Spectroscopic analysis remains the most common method to derive masses of massive stars, the most fundamental stellar parameter. While binary orbits and stellar pulsations can provide much sharper constraints on the stellar mass, these methods are only rarely applicable to massive stars. Unfortunately, spectroscopic masses of massive stars heavily depend on the detailed physics of model atmospheres. Aims. We demonstrate the impact of a consistent treatment of the radiative pressure on inferred gravities and spectroscopic masses of massive stars. Specifically, we investigate the contribution of line and continuum transitions to the photospheric radiative pressure. We further explore the effect of model parameters, e.g., abundances, on the deduced spectroscopic mass. Lastly, we compare our results with the plane-parallel TLUSTY code, commonly used for the analysis of massive stars with photospheric spectra. Methods. We calculate a small set of O-star models with the Potsdam Wolf-Rayet (PoWR) code using different approaches for the quasi-hydrostatic part. These models allow us to quantify the effect of accounting for the radiative pressure consistently. We further use PoWR models to show how the Doppler widths of line profiles and abundances of elements such as iron affect the radiative pressure, and, as a consequence, the derived spectroscopic masses. Results. Our study implies that errors on the order of a factor of two in the inferred spectroscopic mass are to be expected when neglecting the contribution of line and continuum transitions to the radiative acceleration in the photosphere. Usage of implausible microturbulent velocities, or the neglect of important opacity sources such as Fe, may result in errors of approximately 50\% in the spectroscopic mass. A comparison with TLUSTY model atmospheres reveals a very good agreement with PoWR at the limit of low mass-loss rates.}, language = {en} } @article{OskinovaTodtHuenemoerderetal.2015, author = {Oskinova, Lidia M. and Todt, Helge Tobias and Huenemoerder, David P. and Hubrig, Swetlana and Ignace, Richard and Hamann, Wolf-Rainer and Balona, Luis}, title = {On X-ray pulsations in beta Cephei-type variables}, series = {Astronomy and astrophysics : an international weekly journal}, volume = {577}, journal = {Astronomy and astrophysics : an international weekly journal}, publisher = {EDP Sciences}, address = {Les Ulis}, issn = {0004-6361}, doi = {10.1051/0004-6361/201525908}, pages = {5}, year = {2015}, abstract = {Context. beta Cep-type variables are early B-type stars that are characterized by oscillations observable in their optical light curves. At least one beta Cep-variable also shows periodic variability in X-rays. Aims. Here we study the X-ray light curves in a sample of beta Cep-variables to investigate how common X-ray pulsations are for this type of stars. Methods. We searched the Chandra and XMM-Newton X-ray archives and selected stars that were observed by these telescopes for at least three optical pulsational periods. We retrieved and analyzed the X-ray data for kappa Sco, beta Cru, and alpha Vir. The X-ray light curves of these objects were studied to test for their variability and periodicity. Results. While there is a weak indication for X-ray variability in beta Cru, we find no statistically significant evidence of X-ray pulsations in any of our sample stars. This might be due either to the insufficient data quality or to the physical lack of modulations. New, more sensitive observations should settle this question.}, language = {en} } @article{MartinezNunezSanderGimenezGarciaetal.2015, author = {Martinez-Nunez, Silvia and Sander, Angelika and Gimenez-Garcia, Angel and Gonzalez-Galan, Ana and Torrejon, Jose Miguel and Gonzalez-Fernandez, Carlos and Hamann, Wolf-Rainer}, title = {The donor star of the X-ray pulsar X1908+075}, series = {Astronomy and astrophysics : an international weekly journal}, volume = {578}, journal = {Astronomy and astrophysics : an international weekly journal}, publisher = {EDP Sciences}, address = {Les Ulis}, issn = {0004-6361}, doi = {10.1051/0004-6361/201424823}, pages = {9}, year = {2015}, abstract = {High-mass X-ray binaries consist of a massive donor star and a compact object. While several of those systems have been well studied in X-rays, little is known for most of the donor stars as they are often heavily obscured in the optical and ultraviolet regime. There is an opportunity to observe them at infrared wavelengths, however. The goal of this study is to obtain the stellar and wind parameters of the donor star in the X1908+075 high-mass X-ray binary system with a stellar atmosphere model to check whether previous studies from X-ray observations and spectral morphology lead to a sufficient description of the donor star. We obtained H-and K-band spectra of X1908+075 and analysed them with the Potsdam Wolf-Rayet (PoWR) model atmosphere code. For the first time, we calculated a stellar atmosphere model for the donor star, whose main parameters are: M-spec = 15 +/- 6 M-circle dot, T-* = 23(-3)(+6) kK, log g(eff) = 3.0 +/- 0.2 and log L/L-circle dot = 4.81 +/- 0.25. The obtained parameters point towards an early B-type (B0-B3) star, probably in a supergiant phase. Moreover we determined a more accurate distance to the system of 4.85 +/- 0.50 kpc than the previously reported value.}, language = {en} } @article{TodtSanderHainichetal.2015, author = {Todt, Helge Tobias and Sander, Angelika and Hainich, Rainer and Hamann, Wolf-Rainer and Quade, Markus and Shenar, Tomer}, title = {Potsdam Wolf-Rayet model atmosphere grids for WN stars}, series = {Astronomy and astrophysics : an international weekly journal}, volume = {579}, journal = {Astronomy and astrophysics : an international weekly journal}, publisher = {EDP Sciences}, address = {Les Ulis}, issn = {0004-6361}, doi = {10.1051/0004-6361/201526253}, pages = {6}, year = {2015}, abstract = {We present new grids of Potsdam Wolf-Rayet (PoWR) model atmospheres for Wolf-Rayet stars of the nitrogen sequence (WN stars). The models have been calculated with the latest version of the PoWR stellar atmosphere code for spherical stellar winds. The WN model atmospheres include the non-LTE solutions of the statistical equations for complex model atoms, as well as the radiative transfer equation in the co-moving frame. Iron-line blanketing is treated with the help of the superlevel approach, while wind inhomogeneities are taken into account via optically thin clumps. Three of our model grids are appropriate for Galactic metallicity. The hydrogen mass fraction of these grids is 50\%, 20\%, and 0\%, thus also covering the hydrogen-rich late-type WR stars that have been discovered in recent years. Three grids are adequate for LMC WN stars and have hydrogen fractions of 40\%, 20\%, and 0\%. Recently, additional grids with SMC metallicity and with 60\%, 40\%, 20\%, and 0\% hydrogen have been added. We provide contour plots of the equivalent widths of spectral lines that are usually used for classification and diagnostics.}, language = {en} } @article{ShenarOskinovaHamannetal.2015, author = {Shenar, Tomer and Oskinova, Lidia M. and Hamann, Wolf-Rainer and Corcoran, Michael F. and Moffat, Anthony F. J. and Pablo, Herbert and Richardson, Noel D. and Waldron, Wayne L. and Huenemoerder, David P. and Maiz Apellaniz, Jesus and Nichols, Joy S. and Todt, Helge Tobias and Naze, Yael and Hoffman, Jennifer L. and Pollock, Andy M. T. and Negueruela, Ignacio}, title = {A coordinated X-Ray and optical campaign of the nearest massive eclipsing binary, delta ORIONIS Aa. IV. A multiwavelength, non-lte spectroscopic analysis}, series = {The astrophysical journal : an international review of spectroscopy and astronomical physics}, volume = {809}, journal = {The astrophysical journal : an international review of spectroscopy and astronomical physics}, number = {2}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, issn = {0004-637X}, doi = {10.1088/0004-637X/809/2/135}, pages = {20}, year = {2015}, abstract = {Eclipsing systems of massive stars allow one to explore the properties of their components in great detail. We perform a multi-wavelength, non-LTE analysis of the three components of the massive multiple system delta Ori A, focusing on the fundamental stellar properties, stellar winds, and X-ray characteristics of the system. The primary's distance-independent parameters turn out to be characteristic for its spectral type (O9.5 II), but usage of the Hipparcos parallax yields surprisingly low values for the mass, radius, and luminosity. Consistent values follow only if delta Ori lies at about twice the Hipparcos distance, in the vicinity of the sigma-Orionis cluster. The primary and tertiary dominate the spectrum and leave the secondary only marginally detectable. We estimate the V-band magnitude difference between primary and secondary to be Delta V approximate to 2.(m)8. The inferred parameters suggest that the secondary is an early B-type dwarf (approximate to B1 V), while the tertiary is an early B-type subgiant (approximate to B0 IV). We find evidence for rapid turbulent velocities (similar to 200 km s(-1)) and wind inhomogeneities, partially optically thick, in the primary's wind. The bulk of the X-ray emission likely emerges from the primary's stellar wind (logL(X)/L-Bol approximate to -6.85), initiating close to the stellar surface at R-0 similar to 1.1 R-*. Accounting for clumping, the mass-loss rate of the primary is found to be log (M) over dot approximate to -6.4 (M-circle dot yr(-1))., which agrees with hydrodynamic predictions, and provides a consistent picture along the X-ray, UV, optical, and radio spectral domains.}, language = {en} } @article{PabloRichardsonMoffatetal.2015, author = {Pablo, Herbert and Richardson, Noel D. and Moffat, Anthony F. J. and Corcoran, Michael and Shenar, Tomer and Benvenuto, Omar and Fuller, Jim and Naze, Yael and Hoffman, Jennifer L. and Miroshnichenko, Anatoly and Apellaniz, Jesus Maiz and Evans, Nancy and Eversberg, Thomas and Gayley, Ken and Gull, Ted and Hamaguchi, Kenji and Hamann, Wolf-Rainer and Henrichs, Huib and Hole, Tabetha and Ignace, Richard and Iping, Rosina and Lauer, Jennifer and Leutenegger, Maurice and Lomax, Jamie and Nichols, Joy and Oskinova, Lidia M. and Owocki, Stan and Pollock, Andy and Russell, Christopher M. P. and Waldron, Wayne and Buil, Christian and Garrel, Thierry and Graham, Keith and Heathcote, Bernard and Lemoult, Thierry and Li, Dong and Mauclaire, Benjamin and Potter, Mike and Ribeiro, Jose and Matthews, Jaymie and Cameron, Chris and Guenther, David and Kuschnig, Rainer and Rowe, Jason and Rucinski, Slavek and Sasselov, Dimitar and Weiss, Werner}, title = {A coordinated X-Ray and optical campaign of the nearest massive eclipsing binary, delta ORIONIS Aa. III. Analysis of optical photometric (most) and spectroscopic (ground based) variations}, series = {The astrophysical journal : an international review of spectroscopy and astronomical physics}, volume = {809}, journal = {The astrophysical journal : an international review of spectroscopy and astronomical physics}, number = {2}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, issn = {0004-637X}, doi = {10.1088/0004-637X/809/2/134}, pages = {11}, year = {2015}, abstract = {We report on both high-precision photometry from the Microvariability and Oscillations of Stars (MOST) space telescope and ground-based spectroscopy of the triple system delta Ori A, consisting of a binary O9.5II+early-B (Aa1 and Aa2) with P = 5.7 days, and a more distant tertiary (O9 IV P > 400 years). This data was collected in concert with X-ray spectroscopy from the Chandra X-ray Observatory. Thanks to continuous coverage for three weeks, the MOST light curve reveals clear eclipses between Aa1 and Aa2 for the first time in non-phased data. From the spectroscopy, we have a well-constrained radial velocity (RV) curve of Aa1. While we are unable to recover RV variations of the secondary star, we are able to constrain several fundamental parameters of this system and determine an approximate mass of the primary using apsidal motion. We also detected second order modulations at 12 separate frequencies with spacings indicative of tidally influenced oscillations. These spacings have never been seen in a massive binary, making this system one of only a handful of such binaries that show evidence for tidally induced pulsations.}, language = {en} } @article{NicholsHuenemoerderCorcoranetal.2015, author = {Nichols, Joy and Huenemoerder, David P. and Corcoran, Michael F. and Waldron, Wayne and Naze, Yael and Pollock, Andy M. T. and Moffat, Anthony F. J. and Lauer, Jennifer and Shenar, Tomer and Russell, Christopher M. P. and Richardson, Noel D. and Pablo, Herbert and Evans, Nancy Remage and Hamaguchi, Kenji and Gull, Theodore and Hamann, Wolf-Rainer and Oskinova, Lidia M. and Ignace, Rosina and Hoffman, Jennifer L. and Hole, Karen Tabetha and Lomax, Jamie R.}, title = {A COORDINATED X-RAY AND OPTICAL CAMPAIGN OF THE NEAREST MASSIVE ECLIPSING BINARY, delta ORIONIS Aa. II. X-RAY VARIABILITY}, series = {The astrophysical journal : an international review of spectroscopy and astronomical physics}, volume = {809}, journal = {The astrophysical journal : an international review of spectroscopy and astronomical physics}, number = {2}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, issn = {0004-637X}, doi = {10.1088/0004-637X/809/2/133}, pages = {21}, year = {2015}, abstract = {We present time-resolved and phase-resolved variability studies of an extensive X-ray high-resolution spectral data set of the delta Ori Aa binary system. The four observations, obtained with Chandra ACIS HETGS, have a total exposure time of approximate to 479 ks and provide nearly complete binary phase coverage. Variability of the total X-ray flux in the range of 5-25 is is confirmed, with a maximum amplitude of about +/- 15\% within a single approximate to 125 ks observation. Periods of 4.76 and 2.04 days are found in the total X-ray flux, as well as an apparent overall increase in the flux level throughout the nine-day observational campaign. Using 40 ks contiguous spectra derived from the original observations, we investigate the variability of emission line parameters and ratios. Several emission lines are shown to be variable, including S XV, Si XIII, and Ne IX. For the first time, variations of the X-ray emission line widths as a function of the binary phase are found in a binary system, with the smallest widths at phi = 0.0 when the secondary delta Ori Aa2 is at the inferior conjunction. Using 3D hydrodynamic modeling of the interacting winds, we relate the emission line width variability to the presence of a wind cavity created by a wind-wind collision, which is effectively void of embedded wind shocks and is carved out of the X-ray-producing primary wind, thus producing phase-locked X-ray variability.}, language = {en} } @article{CorcoranNicholsPabloetal.2015, author = {Corcoran, Michael F. and Nichols, Joy S. and Pablo, Herbert and Shenar, Tomer and Pollock, Andy M. T. and Waldron, Wayne L. and Moffat, Anthony F. J. and Richardson, Noel D. and Russell, Christopher M. P. and Hamaguchi, Kenji and Huenemoerder, David P. and Oskinova, Lidia M. and Hamann, Wolf-Rainer and Naze, Yael and Ignace, Richard and Evans, Nancy Remage and Lomax, Jamie R. and Hoffman, Jennifer L. and Gayley, Kenneth and Owocki, Stanley P. and Leutenegger, Maurice and Gull, Theodore R. and Hole, Karen Tabetha and Lauer, Jennifer and Iping, Rosina C.}, title = {A coordinated X-Ray and optical campaign of the nearest massive eclipsing binary, delta ORIONIS Aa. I. Overview of thr X-Ray spectrum}, series = {The astrophysical journal : an international review of spectroscopy and astronomical physics}, volume = {809}, journal = {The astrophysical journal : an international review of spectroscopy and astronomical physics}, number = {2}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, issn = {0004-637X}, doi = {10.1088/0004-637X/809/2/132}, pages = {15}, year = {2015}, abstract = {We present an overview of four deep phase-constrained Chandra HETGS X-ray observations of delta Ori A. Delta Ori A is actually a triple system that includes the nearest massive eclipsing spectroscopic binary, delta Ori Aa, the only such object that can be observed with little phase-smearing with the Chandra gratings. Since the fainter star, delta Ori Aa2, has a much lower X-ray luminosity than the brighter primary (delta Ori Aa1), delta Ori Aa provides a unique system with which to test the spatial distribution of the X-ray emitting gas around delta Ori Aa1 via occultation by the photosphere of, and wind cavity around, the X-ray dark secondary. Here we discuss the X-ray spectrum and X-ray line profiles for the combined observation, having an exposure time of nearly 500 ks and covering nearly the entire binary orbit. The companion papers discuss the X-ray variability seen in the Chandra spectra, present new space-based photometry and ground-based radial velocities obtained simultaneously with the X-ray data to better constrain the system parameters, and model the effects of X-rays on the optical and UV spectra. We find that the X-ray emission is dominated by embedded wind shock emission from star Aa1, with little contribution from the tertiary star Ab or the shocked gas produced by the collision of the wind of Aa1 against the surface of Aa2. We find a similar temperature distribution to previous X-ray spectrum analyses. We also show that the line half-widths are about 0.3-0.5 times the terminal velocity of the wind of star Aa1. We find a strong anti-correlation between line widths and the line excitation energy, which suggests that longer-wavelength, lower-temperature lines form farther out in the wind. Our analysis also indicates that the ratio of the intensities of the strong and weak lines of Fe XVII and Ne X are inconsistent with model predictions, which may be an effect of resonance scattering.}, language = {en} } @article{HainichPasemannTodtetal.2015, author = {Hainich, Rainer and Pasemann, Diana and Todt, Helge Tobias and Shenar, Tomer and Sander, Andreas Alexander Christoph and Hamann, Wolf-Rainer}, title = {Wolf-Rayet stars in the Small Magellanic Cloud I. Analysis of the single WN stars}, series = {Astronomy and astrophysics : an international weekly journal}, volume = {581}, journal = {Astronomy and astrophysics : an international weekly journal}, publisher = {EDP Sciences}, address = {Les Ulis}, issn = {1432-0746}, doi = {10.1051/0004-6361/201526241}, pages = {30}, year = {2015}, abstract = {Context. Wolf-Rayet (WR) stars have a severe impact on their environments owing to their strong ionizing radiation fields and powerful stellar winds. Since these winds are considered to be driven by radiation pressure, it is theoretically expected that the degree of the wind mass-loss depends on the initial metallicity of WR stars. Aims. Following our comprehensive studies of WR stars in the Milky Way, M31, and the LMC, we derive stellar parameters and mass-loss rates for all seven putatively single WN stars known in the SMC. Based on these data, we discuss the impact of a low-metallicity environment on the mass loss and evolution of WR stars. Methods. The quantitative analysis of the WN stars is performed with the Potsdam Wolf-Rayet (PoWR) model atmosphere code. The physical properties of our program stars are obtained from fitting synthetic spectra to multi-band observations. Results. In all SMC WN stars, a considerable surface hydrogen abundance is detectable. The majority of these objects have stellar temperatures exceeding 75 kK, while their luminosities range from 10(5.5) to 10(6.1) L-circle dot. The WN stars in the SMC exhibit on average lower mass-loss rates and weaker winds than their counterparts in the Milky Way, M31, and the LMC. Conclusions. By comparing the mass-loss rates derived for WN stars in different Local Group galaxies, we conclude that a clear dependence of the wind mass-loss on the initial metallicity is evident, supporting the current paradigm that WR winds are driven by radiation. A metallicity effect on the evolution of massive stars is obvious from the HRD positions of the SMC WN stars at high temperatures and high luminosities. Standard evolution tracks are not able to reproduce these parameters and the observed surface hydrogen abundances. Homogeneous evolution might provide a better explanation for their evolutionary past.}, language = {en} } @article{HuenemoerderGayleyHamannetal.2015, author = {Huenemoerder, David P. and Gayley, K. G. and Hamann, Wolf-Rainer and Ignace, R. and Nichols, J. S. and Oskinova, Lidia M. and Pollock, A. M. T. and Schulz, Norbert S. and Shenar, Tomer}, title = {Probing Wolf-Rayet winds: Chandra/HETG X-ray spectra of WR 6}, series = {The astrophysical journal : an international review of spectroscopy and astronomical physics}, volume = {815}, journal = {The astrophysical journal : an international review of spectroscopy and astronomical physics}, number = {1}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, issn = {0004-637X}, doi = {10.1088/0004-637X/815/1/29}, pages = {16}, year = {2015}, abstract = {With a deep Chandra/HETGS exposure of WR 6, we have resolved emission lines whose profiles show that the X-rays originate from a uniformly expanding spherical wind of high X-ray-continuum optical depth. The presence of strong helium-like forbidden lines places the source of X-ray emission at tens to hundreds of stellar radii from the photosphere. Variability was present in X-rays and simultaneous optical photometry, but neither were correlated with the known period of the system or with each other. An enhanced abundance of sodium revealed nuclear-processed material, a quantity related to the evolutionary state of the star. The characterization of the extent and nature of the hot plasma in WR 6 will help to pave the way to a more fundamental theoretical understanding of the winds and evolution of massive stars.}, language = {en} } @article{ShenarHamannTodt2014, author = {Shenar, Tomer and Hamann, Wolf-Rainer and Todt, Helge Tobias}, title = {The impact of rotation on the line profiles of Wolf-Rayet stars}, series = {Astronomy and astrophysics : an international weekly journal}, volume = {562}, journal = {Astronomy and astrophysics : an international weekly journal}, publisher = {EDP Sciences}, address = {Les Ulis}, issn = {0004-6361}, doi = {10.1051/0004-6361/201322496}, pages = {13}, year = {2014}, abstract = {Context. Massive Wolf-Rayet stars are recognized today to be in a very common, but short, evolutionary phase of massive stars. While our understanding of Wolf-Rayet stars has increased dramatically over the past decades, it remains unclear whether rapid rotators are among them. There are various indications that rapidly rotating Wolf-Rayet stars should exist. Unfortunately, due to their expanding atmospheres, rotational velocities of Wolf-Rayet stars are very difficult to measure. However, recently observed spectra of several Wolf-Rayet stars reveal peculiarly broad and round emission lines. Could these spectra imply rapid rotation? Aims. In this work, we model the effects of rotation on the atmospheres of Wolf-Rayet stars. We further investigate whether the peculiar spectra of five Wolf-Rayet stars may be explained with the help of stellar rotation, infer appropriate rotation parameters, and discuss the implications of our results. Methods. We make use of the Potsdam Wolf-Rayet (PoWR) non-LTE model atmosphere code. Since the observed spectra of WolfRayet stars are mainly formed in their expanding atmospheres, rotation must be accounted for with a 3D integration scheme of the formal integral. For this purpose, we assume a rotational velocity field consisting of an inner co-rotating domain and an outer domain, where the angular momentum is conserved. Results. We find that rotation can reproduce the unique spectra analyzed here. However, the inferred rotational velocities at the stellar surface are large (similar to 200 km s(-1)), and the inferred co-rotation radii (similar to 10R.) suggest the existence of very strong photospheric magnetic fields (similar to 20 kG).}, language = {en} } @article{SanderTodtHainichetal.2014, author = {Sander, Andreas Alexander Christoph and Todt, Helge Tobias and Hainich, Rainer and Hamann, Wolf-Rainer}, title = {The Wolf-Rayet stars in M31 I. Analysis of the late-type WN stars}, series = {Astronomy and astrophysics : an international weekly journal}, volume = {563}, journal = {Astronomy and astrophysics : an international weekly journal}, publisher = {EDP Sciences}, address = {Les Ulis}, issn = {0004-6361}, doi = {10.1051/0004-6361/201323240}, pages = {22}, year = {2014}, abstract = {Context. Comprehensive studies of Wolf-Rayet stars were performed in the past for the Galactic and the LMC population. The results revealed significant differences, but also unexpected similarities between the WR populations of these different galaxies. Analyzing the WR stars in M 31 will extend our understanding of these objects in different galactic environments. Aims. The present study aims at the late-type WN stars in M 31. The stellar and wind parameters will tell about the formation of WR stars in other galaxies with different metallicity and star formation histories. The obtained parameters will provide constraints to the evolution of massive stars in the environment of M 31. Methods. We used the latest version of the Potsdam Wolf-Rayet model atmosphere code to analyze the stars via fitting optical spectra and photometric data. To account for the relatively low temperatures of the late WN I 0 and WN I I subtypes, our WN models have been extended into this temperature regime. Results. Stellar and atmospheric parameters are derived for all known late-type WN stars in M 31 with available spectra. All of these stars still have hydrogen in their outer envelopes, some of them up to 50\% by mass. The stars are located on the cool side of the zero age main sequence in the Hertzsprung-Russell diagram, while their luminosities range from 105 to 1064). It is remarkable that no star exceeds 106 L. Conclusions. If formed via single-star evolution, the late-type WN stars in M 31 stem from an initial mass range between 20 and 60 M-circle dot. From the very late-type WN9-11 stars, only one star is located in the S Doradus instability strip. We do not find any late-type WN stars with the high luminosities known in the Milky Way.}, language = {en} } @misc{LiermannHamannOskinova2014, author = {Liermann, Angelika and Hamann, Wolf-Rainer and Oskinova, Lidia M.}, title = {The quintuplet cluster III. Hertzsprung-Russell diagram and cluster age (vol 540, pg A14, 2012)}, series = {Astronomy and astrophysics : an international weekly journal}, volume = {563}, journal = {Astronomy and astrophysics : an international weekly journal}, publisher = {EDP Sciences}, address = {Les Ulis}, issn = {0004-6361}, doi = {10.1051/0004-6361/201117534e}, pages = {2}, year = {2014}, language = {en} } @article{ReindlRauchParthasarathyetal.2014, author = {Reindl, Nicole and Rauch, Thomas and Parthasarathy, M. and Werner, K. and Kruk, J. W. and Hamann, Wolf-Rainer and Sander, Andreas Alexander Christoph and Todt, Helge Tobias}, title = {The rapid evolution of the exciting star of the Stingray nebula}, series = {Astronomy and astrophysics : an international weekly journal}, volume = {565}, journal = {Astronomy and astrophysics : an international weekly journal}, publisher = {EDP Sciences}, address = {Les Ulis}, issn = {0004-6361}, doi = {10.1051/0004-6361/201323189}, pages = {14}, year = {2014}, abstract = {Context. SAO 244567, the exciting star of the Stingray nebula, is rapidly evolving. Previous analyses suggested that it has heated up from an effective temperature of about 21 kK in 1971 to over 50 kK in the 1990s. Canonical post-asymptotic giant branch evolution suggests a relatively high mass while previous analyses indicate a low-mass star. Aims. A comprehensive model-atmosphere analysis of UV and optical spectra taken during 1988-2006 should reveal the detailed temporal evolution of its atmospheric parameters and provide explanations for the unusually fast evolution. Methods. Fitting line profiles from static and expanding non-LTE model atmospheres to the observed spectra allowed us to study the temporal change of effective temperature, surface gravity, mass-loss rate, and terminal wind velocity. In addition, we determined the chemical composition of the atmosphere. Results. We find that the central star has steadily increased its effective temperature from 38 kK in 1988 to a peak value of 60 kK in 2002. During the same time, the star was contracting, as concluded from an increase in surface gravity from log g = 4.8 to 6.0 and a drop in luminosity. Simultaneously, the mass-loss rate declined from log(M/M-circle dot yr(-1)) = -9.0 to -11.6 and the terminal wind velocity increased from v(infinity) = 1800 km s(-1) to 2800 km s(-1). Since around 2002, the star stopped heating and has cooled down again to 55 kK by 2006. It has a largely solar surface composition with the exception of slightly subsolar carbon, phosphorus, and sulfur. The results are discussed by considering different evolutionary scenarios. Conclusions. The position of SAO 244567 in the log T-eff-log g plane places the star in the region of sdO stars. By comparison with stellar-evolution calculations, we confirm that SAO 244567 must be a low-mass star (M < 0.55 M-circle dot). However, the slow evolution of the respective stellar evolutionary models is in strong contrast to the observed fast evolution and the young planetary nebula with a kinematical age of only about 1000 years. We speculate that the star could be a late He-shell flash object. Alternatively, it could be the outcome of close-binary evolution. Then SAD 244567 would be a low-mass (0.354 M-circle dot) helium pre-white dwarf after the common-envelope phase, during which the planetary nebula was ejected.}, language = {en} }