@phdthesis{Kellner2007, author = {Kellner, Antje}, title = {Different styles of deformation of the fore-arc wedge along the Chilean convergent margin : insights from 3D numerical experiments}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-15898}, school = {Universit{\"a}t Potsdam}, year = {2007}, abstract = {The styles of deformation of the fore-arc wedges along the Chilean convergent margin are observed to vary significantly, despite similar plate kinematic conditions. Here, I focus on the analysis of fore-arc deformation on two regions along the Chilean convergent margin at 20°-24°S and 37°-42°S. Although both regions are subjected to the oblique subduction of the oceanic Nazca plate and backstopped by the Andes mountain chain; they display different patterns of deformation. The northern Chilean study area (20° - 24°S) is characterized by an exceptionally thick crust of about 60 km beneath the Altiplano - Puna plateau, lack of an accretionary wedge in the fore-arc due to hyperarid climate, and consequently a sediment starved trench. Two major margin parallel strike slip faults are observed in this area, the Atacama Fault Zone (AFZ) and the Precordilleran Fault System (PFS). Both strike-slip faults do not exhibit significant recent displacement. The southern study area (37° - 42°S), compared to the northern study area, is characterized by lower topography, high precipitation rates (~2000 mm/yr), and a younger subducted oceanic plate. An active strike-slip fault, the Liqui{\~n}e-Ofqui-Fault-Zone (LOFZ), shows ~1 cm/yr recent dextral movement and shapes the surface of this area. Thus, the southern Chilean study area exhibits localized strike-slip motion. Within this area the largest earthquake ever recorded, the 1960 Valdivia earthquake, occurred with a moment magnitude of MW=9.5. I have constructed 2D thermal models and 3D mechanical models for both Chilean study areas to study processes related to active subduction. The applied numerical method is the finite element technique by means of the commercial software package ABAQUS. The thermal models are focused on the thermal conditions along the plate interface. The thermal structure along the plate interface reveals the limits of coupling but also the type of transition from coupled to uncoupled and vice versa. The model results show that shear heating at the plate interface is an important mechanism that should be taken into account. The models also show that the thermal condition at the downdip limit of the coupling zone leads to a sharp decrease of friction along the interface. Due to the different geometries of the two Chilean study areas, such as the slab dip and the thickness of the continental crust, the downdip limit of the southern study area is slightly shallower than that of the northern study area. The results of the 2D thermal models are used to constrain the spatial extent of the coupling zone in the 3D mechanical models. 3D numerical simulations are used to investigate how geometry, rheology and mechanical parameters influence strain partitioning and styles of deformation in the Chilean fore-arc. The general outline of the models is based on the fore-arc geometry and boundary conditions as derived from geophysical and geological field data. I examined the influence of different rheological approaches and varying physical properties of the fore-arc to identify and constrain the parameters controlling the difference in surface deformation between the northern and southern study area. The results of numerical studies demonstrate that a small slab dip, a high coefficient of basal friction, a high obliquity of convergence, and a high Young's modulus favour localisation of deformation in the fore-arc wedge. This parameter study helped me to constrain preferred models for the two Chilean study areas that fit to first order observations. These preferred models explain the difference in styles of deformation as controlled by the angle of obliquity, the dip of subducting slab, and the strength of wedge material. The difference in styles can be even larger if I apply stronger coupling between plates within the southern area; however, several independent observations indicate opposite tendency showing southward decrease of intensity of coupling. The weaker wedge material of the preferred model for the northern study area is associated with advanced development of the adjacent orogen, the Central Andes. Analysis of world-wide examples of oblique subduction zones supports the conclusion that more mature subduction zones demonstrate less pronounced localization of strike-slip motion.}, language = {en} } @phdthesis{VasquezParra2007, author = {V{\´a}squez Parra, M{\´o}nica Fernanda}, title = {Mafic magmatism in the Eastern Cordillera and Putumayo Basin, Colombia : causes and consequences}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-13183}, school = {Universit{\"a}t Potsdam}, year = {2007}, abstract = {The Eastern Cordillera of Colombia is mainly composed of sedimentary rocks deposited since early Mesozoic times. Magmatic rocks are scarce. They are represented only by a few locally restricted occurrences of dykes and sills of mafic composition presumably emplaced in the Cretaceous and of volcanic rocks of Neogene age. This work is focused on the study of the Cretaceous magmatism with the intention to understand the processes causing the genesis of these rocks and their significance in the regional tectonic setting of the Northern Andes. The magmatic rocks cut the Cretaceous sedimentary succession of black shales and marlstones that crop out in both flanks of the Eastern Cordillera. The studied rocks were classified as gabbros (C{\´a}ceres, Pacho, Rodrigoque), tonalites (C{\´a}ceres, La Corona), diorites and syenodiorites (La Corona), pyroxene-hornblende gabbros (Pacho), and pyroxene-hornblendites (Pajarito). The gabbroic samples are mainly composed of plagioclase, clinopyroxene, and/or green to brown hornblende, whereas the tonalitic rocks are mainly composed of plagioclase and quartz. The samples are highly variable in crystal sizes from fine- to coarse-grained. Accessory minerals such as biotite, titanite and zircon are present. Some samples are characterized by moderate to strong alteration, and show the presence of epidote, actinolite and chlorite. Major and trace element compositions of the rocks as well as the rock-forming minerals show significant differences in the geochemical and petrological characteristics for the different localities, suggesting that this magmatism does not result from a single melting process. The wide compositional spectrum of trace elements in the intrusions is characteristic for different degrees of mantle melting and enrichment of incompatible elements. MORB- and OIB-like compositions suggest at least two different sources of magma with tholeiitic and alkaline affinity, respectively. Evidence of slab-derived fluids can be recognized in the western part of the basin reflected in higher Ba/Nb and Sr/P ratios and also in the Sr radiogenic isotope ratios, which is possible a consequence of metasomatism in the mantle due to processes related to the presence of a previously subducted slab. The trace element patterns evidence an extensional setting in the Cretaceous basin producing a continental rift, with continental crust being stretched until oceanic crust was generated in the last stages of this extension. Electron microprobe analyses (EMPA) of the major elements and synchrotron radiation micro-X-ray fluorescence (μ-SRXRF) analyses of the trace element composition of the early crystallized minerals of the intrusions (clinopyroxenes and amphiboles) reflect the same dual character that has been found in the bulk-rock analyses. Despite the observed alteration of the rocks, the mineral composition shows evidences for an enriched and a relative depleted magma source. Even the normalization of the trace element concentrations of clinopyroxenes and amphiboles to the whole rock nearly follows the pattern predicted by published partition coefficients, suggesting that the alteration did not change the original trace element compositions of the investigated minerals. Sr-Nd-Pb isotope data reveal a large isotopic variation but still suggest an initial origin of the magmas in the mantle. Samples have moderate to highly radiogenic compositions of 143Nd/144Nd and high 87Sr/86Sr ratios and follow a trend towards enriched mantle compositions, like the local South American Paleozoic crust. The melts experienced variable degrees of contamination by sediments, crust, and seawater. The age corrected Pb isotope ratios show two separated groups of samples. This suggests that the chemical composition of the mantle below the Northern Andes has been modified by the interaction with other components resulting in a heterogeneous combination of materials of diverse origins. Although previous K/Ar age dating have shown that the magmatism took place in the Cretaceous, the high error of the analyses and the altered nature of the investigated minerals did preclude reliable interpretations. In the present work 40Ar/39Ar dating was carried out. The results show a prolonged history of magmatism during the Cretaceous over more than 60 Ma, from ~136 to ~74 Ma (Hauterivian to Campanian). Pre-Cretaceous rifting phases occurred in the Triassic-Jurassic for the western part of the basin and in the Paleozoic for the eastern part. Those previous rifting phases are decisive mechanisms controlling the localization and composition of the Cretaceous magmatism. Therefore, it is the structural position and not the age of the intrusions which preconditions the kind of magmatism and the degree of melting. The divergences on ages are the consequence of the segmentation of the basin in several sub-basins which stretching, thermal evolution and subsidence rate evolved independently. The first hypothesis formulated at the beginning of this investigation was that the Cretaceous gabbroic intrusions identified in northern Ecuador could be correlated with the intrusions described in the Eastern Cordillera. The mafic occurrences should mark the location of the most subsiding places of the large Cretaceous basin in northern South America. For this reason, the gabbroic intrusions cutting the Cretaceous succession in the Putumayo Basin, southern Colombia, were investigated. The results of the studies were quite unexpected. The petrologic and geochemical character of the magmatic rocks indicates subduction-related magmatism. K/Ar dating of amphibole yields a Late Miocene to Pliocene age (6.1 ± 0.7 Ma) for the igneous event in the basin. Although there is no correlation between this magmatic event and the Cretaceous magmatic event, the data obtained has significant tectonic and economic implications. The emplacement of the Neogene gabbroic rocks coincides with the late Miocene/Pliocene Andean orogenic uplift as well as with a significant pulse of hydrocarbon generation and expulsion.}, language = {en} } @phdthesis{Melnick2007, author = {Melnick, Daniel}, title = {Neogene seismotectonics of the south-central Chile margin : subduction-related processes over various temporal and spatial scales}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-12091}, school = {Universit{\"a}t Potsdam}, year = {2007}, abstract = {The Andean orogen is the most outstanding example of mountain building caused by the subduction of oceanic below continental lithosphere. The Andes formed by the subduction of the Nazca and Antarctic oceanic plates under the South American continent over at least ~200 million years. Tectonic and climatic conditions vary markedly along this north-south-oriented plate boundary, which thus represents an ideal natural laboratory to study tectonic and climatic segmentation processes and their possible feedbacks. Most of the seismic energy on Earth is released by earthquakes in subduction zones, like the giant 1960, Mw 9.5 event in south-central Chile. However, the segmentation mechanisms of surface deformation during and between these giant events have remained poorly understood. The Andean margin is a key area to study seismotectonic processes because of its along-strike variability under similar plate kinematic boundary conditions. Active deformation has been widely studied in the central part of the Andes, but the south-central sector of the orogen has gathered less research efforts. This study focuses on tectonics at the Neogene and late Quaternary time scales in the Main Cordillera and coastal forearc of the south-central Andes. For both domains I document the existence of previously unrecognized active faults and present estimates of deformation rates and fault kinematics. Furthermore these data are correlated to address fundamental mountain building processes like strain partitioning and large-scale segmentation. In the Main Cordillera domain and at the Neogene timescale, I integrate structural and stratigraphic field observations with published isotopic ages to propose four main phases of coupled styles of tectonics and distribution of volcanism and magmatism. These phases can be related to the geometry and kinematics of plate convergence. At the late Pleistocene timescale, I integrate field observations with lake seismic and bathymetric profiles from the Lago Laja region, located near the Andean drainage divide. These data reveal Holocene extensional faults, which define the Lago Laja fault system. This fault system has no significant strike-slip component, contrasting with the Liqui{\~n}e-Ofqui dextral intra-arc system to the south, where Holocene strike-slip markers are ubiquitous. This contrast in structural style along the arc is coincident with a marked change in along-strike fault geometries in the forearc, across the Arauco Peninsula. Thereon I propose that a net gradient in the degree of partitioning of oblique subduction occurs across the Arauco transition zone. To the north, the margin parallel component of oblique convergence is distributed in a wide zone of diffuse deformation, while to the south it is partitioned along an intra-arc, margin-parallel strike-slip fault zone. In the coastal forearc domain and at the Neogene timescale, I integrate structural and stratigraphic data from field observations, industry reflection-seismic profiles and boreholes to emphasize the influence of climate-driven filling of the trench on the mechanics and kinematics of the margin. I show that forearc basins in the 34-45°S segment record Eocene to early Pliocene extension and subsidence followed by ongoing uplift and contraction since the late Pliocene. I interpret the first stage as caused by tectonic erosion due to high plate convergence rates and reduced trench fill. The subsequent stage, in turn, is related to accretion caused by low convergence rates and the rapid increase in trench fill after the onset of Patagonian glaciations and climate-driven exhumation at ~6-5 Ma. On the late Quaternary timescale, I integrate off-shore seismic profiles with the distribution of deformed marine terraces from Isla Santa Mar{\´i}a, dated by the radiocarbon method, to show that inverted reverse faulting controls the coastal geomorphology and segmentation of surface deformation. There, a cluster of microearthquakes illuminates one of these reverse faults, which presumingly reaches the plate interface. Furthermore, I use accounts of coseismic uplift during the 1835 M>8 earthquake made by Charles Darwin, to propose that this active reverse fault has been mechanically coupled to the megathrust. This has important implications on the assessment of seismic hazards in this, and other similar regions. These results underscore the need to study plate-boundary deformation processes at various temporal and spatial scales and to integrate geomorphologic, structural, stratigraphic, and geophysical data sets in order to understand the present distribution and causes of tectonic segmentation.}, language = {en} } @phdthesis{Roessler2006, author = {R{\"o}ßler, Dirk}, title = {Retrieval of earthquake source parameters in inhomogeneous anisotropic mediawith application to swarm events in West Bohemia in 2000}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-7758}, school = {Universit{\"a}t Potsdam}, year = {2006}, abstract = {Earthquakes form by sudden brittle failure of rock mostly as shear ruptures along a rupture plane. Beside this, mechanisms other than pure shearing have been observed for some earthquakes mainly in volcanic areas. Possible explanations include complex rupture geometries and tensile earthquakes. Tensile earthquakes occur by opening or closure of cracks during rupturing. They are likely to be often connected with fluids that cause pressure changes in the pore space of rocks leading to earthquake triggering. Tensile components have been reported for swarm earthquakes in West Bohemia in 2000. The aim and subject of this work is an assessment and the accurate determination of such tensile components for earthquakes in anisotropic media. Currently used standard techniques for the retrieval of earthquake source mechanisms assume isotropic rock properties. By means of moment tensors, equivalent forces acting at the source are used to explain the radiated wavefield. Conversely, seismic anisotropy, i.e. directional dependence of elastic properties, has been observed in the earth's crust and mantle such as in West Bohemia. In comparison to isotropy, anisotropy causes modifications in wave amplitudes and shear-wave splitting. In this work, effects of seismic anisotropy on true or apparent tensile source components of earthquakes are investigated. In addition, earthquake source parameters are determined considering anisotropy. It is shown that moment tensors and radiation patterns due to shear sources in anisotropic media may be similar to those of tensile sources in isotropic media. In contrast, similarities between tensile earthquakes in anisotropic rocks and shear sources in isotropic media may exist. As a consequence, the interpretation of tensile source components is ambiguous. The effects that are due to anisotropy depend on the orientation of the earthquake source and the degree of anisotropy. The moment of an earthquake is also influenced by anisotropy. The orientation of fault planes can be reliably determined even if isotropy instead of anisotropy is assumed and if the spectra of the compressional waves are used. Greater difficulties may arise when the spectra of split shear waves are additionally included. Retrieved moment tensors show systematic artefacts. Observed tensile source components determined for events in West Bohemia in 1997 can only partly be attributed to the effects of moderate anisotropy. Furthermore, moment tensors determined earlier for earthquakes induced at the German Continental Deep Drilling Program (KTB), Bavaria, were reinterpreted under assumptions of anisotropic rock properties near the borehole. The events can be consistently identified as shear sources, although their moment tensors comprise tensile components that are considered to be apparent. These results emphasise the necessity to consider anisotropy to uniquely determine tensile source parameters. Therefore, a new inversion algorithm has been developed, tested, and successfully applied to 112 earthquakes that occurred during the most recent intense swarm episode in West Bohemia in 2000 at the German-Czech border. Their source mechanisms have been retrieved using isotropic and anisotropic velocity models. Determined local magnitudes are in the range between 1.6 and 3.2. Fault-plane solutions are similar to each other and characterised by left-lateral faulting on steeply dipping, roughly North-South oriented rupture planes. Their dip angles decrease above a depth of about 8.4km. Tensile source components indicating positive volume changes are found for more than 60\% of the considered earthquakes. Their size depends on source time and location. They are significant at the beginning of the swarm and at depths below 8.4km but they decrease in importance later in the course of the swarm. Determined principle stress axes include P axes striking Northeast and Taxes striking Southeast. They resemble those found earlier in Central Europe. However, depth-dependence in plunge is observed. Plunge angles of the P axes decrease gradually from 50° towards shallow angles with increasing depth. In contrast, the plunge angles of the T axes change rapidly from about 8° above a depth of 8.4km to 21° below this depth. By this thesis, spatial and temporal variations in tensile source components and stress conditions have been reported for the first time for swarm earthquakes in West Bohemia in 2000. They also persist, when anisotropy is assumed and can be explained by intrusion of fluids into the opened cracks during tensile faulting.}, subject = {Seismologie}, language = {en} } @phdthesis{Hultzsch2006, author = {Hultzsch, Nadja}, title = {Lakustrine Sedimente als Archive des sp{\"a}tquart{\"a}ren Umweltwandels in der Amery-Oase, Ostantarktis}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-7980}, school = {Universit{\"a}t Potsdam}, year = {2006}, abstract = {Im Rahmen einer deutsch-australischen Forschungskooperation erfolgte im S{\"u}dsommer 2001/2002 eine Expedition in die Amery-Oase (70°50'S, 68°00'E), die im Einzugsgebiet des Lambert-Gletscher/Amery-Schelfeis-Systems, dem gr{\"o}ßten ostantarktischen Eis-Drainagesystem, liegt. Von deutscher Seite wurden im Zuge der Gel{\"a}ndekampagne erstmals lakustrine Sedimentsequenzen gewonnen, um die bislang wenig erforschte sp{\"a}tquart{\"a}re Klima- und Umweltgeschichte dieser rund 1800 km2 großen eisfreien Region zu rekonstruieren. Die drei untersuchten Glazialseen Beaver, Radok und Terrasovoje unterscheiden sich sowohl deutlich in ihrer Gr{\"o}ße, Bathymetrie und den hydrologischen Merkmalen sowie in ihren Sedimentabfolgen. Einen Schwerpunkte dieser Doktorarbeit bildet die Rekonstruktion der Sedimentationsprozesse und des Ablagerungsmilieus sowie Untersuchungen zur Herkunft des detritischen Sedimentmaterials in den Seebecken. Der methodische Ansatz verfolgt die Charakterisierung der klastischen Sedimentfazies an Hand lithologisch-granulometrischer Merkmale sowie mineralogisch-geochemischer Analysen der Sedimentherkunft. Ein weiterer Schwerpunkt ist die Rekonstruktion der holoz{\"a}nen biogen gesteuerten Ablagerungsbedingungen im Terrasovoje-See, die R{\"u}ckschl{\"u}sse auf den kurzfristigen postglazialen Klima- und Umweltwandel in der Amery-Oase gestattet. Dabei wurden mikrofazielle Untersuchungsmethoden und hochaufl{\"o}sende Elementscannermessungen angewandt. Die klastische Sedimentherkunft in den drei Seen unterscheidet sich r{\"a}umlich deutlich voneinander und spiegelt den komplexen geologischen Aufbau der Amery-Oase wider. Als Sedimentquellen konnten pr{\"a}kambrische Metamorphite, permotriassische Sedimentgesteine und terti{\"a}re Lockersedimente identifiziert werden. Die Varibilit{\"a}t der Herkunftssignale ist zeitlich weniger deutlich als r{\"a}umlich ausgepr{\"a}gt und deutet auf relativ konstante Liefergebiete in den einzelnen Seen hin. Das glaziolakustrine Ablagerungsmilieu der drei untersuchten Seen zeigt klare r{\"a}umliche und zeitliche Unterschiede. In allen drei Seen setzen sich die {\"a}lteren Sedimente aus grobk{\"o}rnigem, h{\"a}ufig diamiktischem Material zusammen, w{\"a}hrend die j{\"u}ngeren Sedimente aus feink{\"o}rnigen Laminiten bestehen. Die lithofazielle Zweiteilung in den Sedimentabfolgen deutet auf einen R{\"u}ckzug der Gletscher und/oder einen Anstieg der Wassertiefen im {\"U}bergang von den grobk{\"o}rnigen zu den feink{\"o}rnigen Ablagerungseinheiten hin. Die oberen feink{\"o}rnigen Kernabschnitte spiegeln in allen drei Seen die postglaziale lakustrine Sedimentation wider. Im Beaver-See wird die postglaziale Fazies durch laminierte klastische Stillwassersedimente repr{\"a}sentiert, im Radok-See durch Turbiditsequenzen und im Terrasovoje-See durch Algenlaminite. Abgesehen vom Terrasovoje-See ist die zeitliche Einordnung der Fazieswechsel auf Grund mangelnder Altersinformationen schwer erfassbar. Im Terrasovoje-See setzte die postglaziale Sedimentation um rund 12,4 cal. ka ein. Somit weisen die darunterliegenden glazigenen Klastika mindestens ein sp{\"a}tpleistoz{\"a}nes Alter auf. Die sedimentologischen Eigenschaften, {\"A}nderungen der Sedimentationsraten und organogene Zusammensetzung der postglazialen Biogenlaminite des Terrasovoje-Sees deuten auf Variationen der pal{\"a}olimnologischen Bedingungen hinsichtlich Eisbedeckung, biologischer Produktivit{\"a}t, Wasserstand, Redoxbedingungen und Salinit{\"a}t hin, die mit regionalen holoz{\"a}nen Klima{\"a}nderungen in Verbindung gebracht werden k{\"o}nnen. Weitere Anhaltspunkte ergeben sich aus der Zusammensetzung und den M{\"a}chtigkeitsvariationen der Laminae, die generell aus Wechsellagerungen von Cyanobakterienmatten mit feinklastischen Lagen bestehen. Lagenz{\"a}hlungen der Laminae belegen {\"A}nderungen des Ablagerungsmilieus auf subdekadischen Zeitskalen, wobei zeitweilige j{\"a}hrliche Signale nicht ausgeschlossen werden k{\"o}nnen. Unter Ber{\"u}cksichtigung aller faziellen Indikatoren l{\"a}sst sich aus der Sedimentabfolge des Terrasovoje-Sees ein fr{\"u}hholoz{\"a}nes Klimaoptimum zwischen 9 und 7 cal. ka sowie weitere W{\"a}rmephasen zwischen 3,2 und 2,3 cal. ka sowie 1,5 und 1,0 cal. ka ableiten. Im Vergleich mit Eiskernarchiven und anderen Seesedimentabfolgen aus ostantarktischen Oasen zeigt sich, dass das Auftreten postglazialer Warmphasen nicht allenorts einem allgemein g{\"u}ltigen r{\"a}umlich-zeitlichen Muster folgt. Die Ursachen hierf{\"u}r liegen vermutlich in den lokalen geographischen Gegebenheiten. Es l{\"a}sst sich daraus schliessen, dass die bisher vorliegenden Klimarekonstruktionen eher das Lokalklima an einem Untersuchungsstandort als das Großklima der Ostantarktis reflektieren. Daraus ergibt sich die Notwendigkeit weiterer Untersuchungen von antarktischen Klimaarchiven und Untersuchungsstandorten, um {\"o}rtliche von {\"u}berregionalen Klimasignalen besser unterscheiden zu k{\"o}nnen.}, subject = {Antarktis}, language = {de} } @phdthesis{Sorrel2006, author = {Sorrel, Philippe}, title = {The Aral Sea : a palaeoclimate archive}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-7807}, school = {Universit{\"a}t Potsdam}, year = {2006}, abstract = {The intracontinental endorheic Aral Sea, remote from oceanic influences, represents an excellent sedimentary archive in Central Asia that can be used for high-resolution palaeoclimate studies. We performed palynological, microfacies and geochemical analyses on sediment cores retrieved from Chernyshov Bay, in the NW part of the modern Large Aral Sea. The most complete sedimentary sequence, whose total length is 11 m, covers approximately the past 2000 years of the late Holocene. High-resolution palynological analyses, conducted on both dinoflagellate cysts assemblages and pollen grains, evidenced prominent environmental change in the Aral Sea and in the catchment area. The diversity and the distribution of dinoflagellate cysts within the assemblages characterized the sequence of salinity and lake-level changes during the past 2000 years. Due to the strong dependence of the Aral Sea hydrology to inputs from its tributaries, the lake levels are ultimately linked to fluctuations in meltwater discharges during spring. As the amplitude of glacial meltwater inputs is largely controlled by temperature variations in the Tien Shan and Pamir Mountains during the melting season, salinity and lake-level changes of the Aral Sea reflect temperature fluctuations in the high catchment area during the past 2000 years. Dinoflagellate cyst assemblages document lake lowstands and hypersaline conditions during ca. 0-425 AD, 920-1230 AD, 1500 AD, 1600-1650 AD, 1800 AD and since the 1960s, whereas oligosaline conditions and higher lake levels prevailed during the intervening periods. Besides, reworked dinoflagellate cysts from Palaeogene and Neogene deposits happened to be a valuable proxy for extreme sheet-wash events, when precipitation is enhanced over the Aral Sea Basin as during 1230-1450 AD. We propose that the recorded environmental changes are related primarily to climate, but may have been possibly amplified during extreme conditions by human-controlled irrigation activities or military conflicts. Additionally, salinity levels and variations in solar activity show striking similarities over the past millennium, as during 1000-1300 AD, 1450-1550 and 1600-1700 AD when low lake levels match well with an increase in solar activity thus suggesting that an increase in the net radiative forcing reinforced past Aral Sea's regressions. On the other hand, we used pollen analyses to quantify changes in moisture conditions in the Aral Sea Basin. High-resolution reconstruction of precipitation (mean annual) and temperature (mean annual, coldest versus warmest month) parameters are performed using the "probability mutual climatic spheres" method, providing the sequence of climate change for the past 2000 years in western Central Asia. Cold and arid conditions prevailed during ca. 0-400 AD, 900-1150 AD and 1500-1650 AD with the extension of xeric vegetation dominated by steppe elements. Conversely, warmer and less arid conditions occurred during ca. 400-900 AD and 1150-1450 AD, where steppe vegetation was enriched in plants requiring moister conditions. Change in the precipitation pattern over the Aral Sea Basin is shown to be predominantly controlled by the Eastern Mediterranean (EM) cyclonic system, which provides humidity to the Middle East and western Central Asia during winter and early spring. As the EM is significantly regulated by pressure modulations of the North Atlantic Oscillation (NAO) when the system is in a negative phase, a relationship between humidity over western Central Asia and the NAO is proposed. Besides, laminated sediments record shifts in sedimentary processes during the late Holocene that reflect pronounced changes in taphonomic dynamics. In Central Asia, the frequency of dust storms occurring during spring when the continent is heating up is mostly controlled by the intensity and the position of the Siberian High (SH) Pressure System. Using titanium (Ti) content in laminated sediments as a proxy for aeolian detrital inputs, changes in wind dynamics over Central Asia is documented for the past 1500 years, offering the longest reconstruction of SH variability to date. Based on high Ti content, stronger wind dynamics are reported from 450-700 AD, 1210-1265 AD, 1350-1750 AD and 1800-1975 AD, reporting a stronger SH during spring. In contrast, lower Ti content from 1750-1800 AD and 1980-1985 AD reflect a diminished influence of the SH and a reduced atmospheric circulation. During 1180-1210 AD and 1265-1310 AD, considerably weakened atmospheric circulation is evidenced. As a whole, though climate dynamics controlled environmental changes and ultimately modulated changes in the western Central Asia's climate system, it is likely that changes in solar activity also had an impact by influencing to some extent the Aral Sea's hydrology balance and also regional temperature patterns in the past.
The appendix of the thesis is provided via the HTML document as ZIP download.}, subject = {Aralsee}, language = {en} } @inproceedings{RehakStreckerEchtler2006, author = {Rehak, Katrin and Strecker, Manfred and Echtler, Helmut Peter}, title = {DEM supported tectonic geomorphology : the Coastal Cordillera of the South-Central Chilean active margin ; [Poster]}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-7224}, year = {2006}, abstract = {Fluvial systems are one of the major features shaping a landscape. They adjust to the prevailing tectonic and climatic setting and therefore are very sensitive markers of changes in these systems. If their response to tectonic and climatic forcing is quantified and if the climatic signal is excluded, it is possible to derive a local deformation history. Here, we investigate fluvial terraces and erosional surfaces in the southern Chilean forearc to assess a long-term geomorphic and hence tectonic evolution. Remote sensing and field studies of the Nahuelbuta Range show that the long-term deformation of the Chilean forearc is manifested by breaks in topography, sequences of differentially uplifted marine, alluvial and strath terraces as well as tectonically modified river courses and drainage basins. We used SRTM-90-data as basic elevation information for extracting and delineating drainage networks. We calculated hypsometric curves as an indicator for basin uplift, stream-length gradient indices to identify stream segments with anomalous slopes, and longitudinal river profiles as well as DS-plots to identify knickpoints and other anomalies. In addition, we investigated topography with elevation-slope graphs, profiles, and DEMs to reveal erosional surfaces. During the first field trip we already measured palaeoflow directions, performed pebble counting and sampled the fluvial terraces in order to apply cosmogenic nuclide dating (10Be, 26Al) as well as provenance analyses. Our preliminary analysis of the Coastal Cordillera indicates a clear segmentation between the northern and southern parts of the Nahuelbuta Range. The Lanalhue Fault, a NW-SE striking fault zone oblique to the plate boundary, defines the segment boundary. Furthermore, we find a complex drainage re-organisation including a drainage reversal and wind gap on the divide between the Tir{\´u}a and Pellahu{\´e}n basins east of the town Tir{\´u}a. The coastal basins lost most of their Andean sediment supply areas that existed in Tertiary and in part during early Pleistocene time. Between the B{\´i}o-B{\´i}o and Imperial rivers no Andean river is recently capable to traverse the Coastal Cordillera, suggesting ongoing Quaternary uplift of the entire range. From the spatial distribution of geomorphic surfaces in this region two uplift signals may be derived: (1) a long-term differential uplift process, active since the Miocene and possibly caused by underplating of subducted trench sediments, (2) a younger, local uplift affecting only the northern part of the Nahuelbuta Range that may be caused by the interaction of the forearc with the subduction of the Mocha Fracture Zone at the latitude of the Arauco peninsula. Our approach thus provides results in our attempt to decipher the characteristics of forearc development of active convergent margins using long-term geomorphic indicators. Furthermore, it is expected that our ongoing assessment will constrain repeatedly active zones of deformation.
Interdisziplin{\"a}res Zentrum f{\"u}r Musterdynamik und Angewandte Fernerkundung Workshop vom 9. - 10. Februar 2006}, language = {en} } @phdthesis{Heim2005, author = {Heim, Birgit}, title = {Qualitative and quantitative analyses of Lake Baikal's surface-waters using ocean colour satellite data (SeaWiFS)}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-7182}, school = {Universit{\"a}t Potsdam}, year = {2005}, abstract = {One of the most difficult issues when dealing with optical water remote-sensing is its acceptance as a useful application for environmental research. This problem is, on the one hand, concerned with the optical complexity and variability of the investigated natural media, and therefore the question arises as to the plausibility of the parameters derived from remote-sensing techniques. Detailed knowledge about the regional bio- and chemico-optical properties is required for such studies, however such information is seldom available for the sites of interest. On the other hand, the primary advantage of remote-sensing information, which is the provision of a spatial overview, may not be exploited fully by the disciplines that would benefit most from such information. It is often seen in a variety of disciplines that scientists have been primarily trained to look at discrete data sets, and therefore have no experience of incorporating information dealing with spatial heterogeneity. In this thesis, the opportunity was made available to assess the potential of Ocean Colour data to provide spatial and seasonal information about the surface waters of Lake Baikal (Siberia). While discrete limnological field data is available, the spatial extension of Lake Baikal is enormous (ca. 600 km), while the field data are limited to selected sites and expedition time windows. Therefore, this remote-sensing investigation aimed to support a multi-disciplinary limnological investigation within the framework of the paleoclimate EU-project 'High Resolution CONTINENTal Paleoclimate Record in Lake Baikal, Siberia (CONTINENT)' using spatial and seasonal information from the SeaWiFS satellite (NASA). From this, the SeaWiFS study evolved to become the first efficient bio-optical satellite study of Lake Baikal. During the course of three years, field work including spectral field measurements and water sampling, was carried out at Lake Baikal in Southern Siberia, and at the Mecklenburg and Brandenburg lake districts in Germany. The first step in processing the SeaWiFS satellite data involved adapting the SeaDAS (NASA) atmospheric-correction processing to match as close as possible the specific conditions of Lake Baikal. Next, various Chl-a algorithms were tested on the atmospherically-corrected optimized SeaWiFS data set (years 2001 to 2002), comparing the CONTINENT pigment ground-truth data with the Chl-a concentrations derived from the satellite data. This showed the high performance of the global Chl-a products OC2 and OC4 for the oligotrophic, transparent waters (bio-optical Case 1) of Lake Baikal. However, considerable Chl-a overestimation prevailed in bio-optical Case 2 areas for the case of discharge events. High-organic terrigenous input into Lake Baikal could be traced and information extracted using the SeaWiFS spectral data. Suspended Particulate Matter (SPM) was quantified by the regression of the SeaDAS attenuation coefficient as the optical parameter with SPM field data. Finally, the Chl-a and terrigenous input maps derived from the remote sensing data were used to assist with analyzing the relationships between the various discrete data obtained during the CONTINENT field work. Hence, plausible spatial and seasonal information describing autochthonous and allochthonous material in Lake Baikal could be provided by satellite data.Lake Baikal, with its bio-optical complexity and its different areas of Case 1 and Case 2 waters, is a very interesting case study for Ocean Colour analyses. Proposals for future Ocean Colour studies of Lake Baikal are discussed, including which bio-optical parameters for analytical models still need to be clarified by field investigations.}, subject = {Baikalsee}, language = {en} } @inproceedings{Lueck2006, author = {L{\"u}ck, Erika}, title = {Geophysik f{\"u}r den oberfl{\"a}chennahen Bereich (Landwirtschaft, Bodenkunde, Arch{\"a}ologie, Umwelt usw.)}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-7045}, year = {2006}, abstract = {Dokument 1: Foliensatz | Dokument 2: Animation
Interdisziplin{\"a}res Zentrum f{\"u}r Musterdynamik und Angewandte Fernerkundung Workshop vom 9. - 10. Februar 2006}, language = {de} } @phdthesis{Martin2005, author = {Martin, Sebastian}, title = {Subduction zone wave guides : deciphering slab structure using intraslab seismicity at the Chile-Peru subduction zone}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-5820}, school = {Universit{\"a}t Potsdam}, year = {2005}, abstract = {Subduction zones are regions of intense earthquake activity up to great depth. Sources are located inside the subducting lithosphere and, as a consequence, seismic radiation from subduction zone earthquakes is strongly affected by the interior slab structure. The wave field of these intraslab events observed in the forearc region is profoundly influenced by a seismically slow layer atop the slab surface. This several kilometer thick low-velocity channel (wave guide) causes the entrapment of seismic energy producing strong guided wave phases that appear in P onsets in certain regions of the forearc. Observations at the Chile-Peru subduction zone presented here, as well as observations at several other circum-pacific subduction zones show such signals. Guided wave analysis contributes details of immense value regarding the processes near the slab surface, such as layering of subducted lithosphere, source locations of intraslab seismicity and most of all, range and manner of mineralogical phase transitions. Seismological data stem from intermediate depth events (depth range 70 km - 300 km) recorded in northern Chile near 21 Grad S during the collaborative research initiative " Deformation Processes in the Andes" (SFB 267). A subset of stations - all located within a slab-parallel transect close to 69 Grad W - show low-frequency first arrivals (2 Hz), sometimes followed by a second high-frequency phase. We employ 2-dimensional finite-difference simulations of complete P-SV wave propagation to explore the parameter space of subduction zone wave guides and explain the observations. Key processes underlying the guided wave propagation are studied: Two distinct mechanisms of decoupling of trapped energy from the wave guide are analyzed - a prerequisite to observe the phases at stations located at large distances from the wave guide (up to 100 km). Variations of guided wave effects perpendicular to the strike of the subduction zone are investigated, such as the influence of phases traveling in the fast slab. Further, the merits and limits of guided wave analysis are assessed. Frequency spectra of the guided wave onsets prove to be a robust quantity that captures guided wave characteristics at subduction zones including higher mode excitation. They facilitate the inference of wave guide structure and source positioning: The peak frequency of the guided wave fundamental mode is associated with a certain combination of layer width and velocity contrast. The excitation strength of the guided wave fundamental mode and higher modes is associated with source position and orientation relative to the low-velocity layer. The guided wave signals at the Chile-Peru subduction zone are caused by energy that leaks from the subduction zone wave guide. On the one hand, the bend shape of the slab allows for leakage at a depth of 100 km. On the other, equalization of velocities between the wave guide and the host rocks causes further energy leakage at the contact zone between continental and oceanic crust (70 km depth). Guided waves bearing information on deep slab structure can therefore be recorded at specific regions in the forearc. These regions are determined based on slab geometry, and their locations coincide with the observations. A number of strong constraints on the structure of the Chile-Peru slab are inferred: The deep wave guide for intraslab events is formed by a layer of 2 km average width that remains seismically slow (7 percent velocity reduction compared to surrounding mantle). This low-velocity layer at the top of the Chile-Peru slab is imaged from a depth of 100 km down to at least 160 km. Intermediate depth events causing the observed phases are located inside the layer or directly beneath it in the slab mantle. The layer is interpreted as partially eclogized lower oceanic crust persisting to depth beyond the volcanic arc.}, subject = {Anden}, language = {en} } @phdthesis{Grosse2005, author = {Grosse, Guido}, title = {Characterisation and evolution of periglacial landscapes in Northern Siberia during the Late Quaternary : remote sensing and GIS studies}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-5544}, school = {Universit{\"a}t Potsdam}, year = {2005}, abstract = {About 24 \% of the land surface in the northern hemisphere are underlayed by permafrost in various states. Permafrost aggradation occurs under special environmental conditions with overall low annual precipitation rates and very low mean annual temperatures. Because the general permafrost occurrence is mainly driven by large-scale climatic conditions, the distribution of permafrost deposits can be considered as an important climate indicator. The region with the most extensive continuous permafrost is Siberia. In northeast Siberia, the ice- and organic-rich permafrost deposits of the Ice Complex are widely distributed. These deposits consist mostly of silty to fine-grained sandy sediments that were accumulated during the Late Pleistocene in an extensive plain on the then subaerial Laptev Sea shelf. One important precondition for the Ice Complex sedimentation was, that the Laptev Sea shelf was not glaciated during the Late Pleistocene, resulting in a mostly continuous accumulation of permafrost sediments for at least this period. This shelf landscape became inundated and eroded in large parts by the Holocene marine transgression after the Last Glacial Maximum. Remnants of this landscape are preserved only in the present day coastal areas. Because the Ice Complex deposits contain a wide variety of palaeo-environmental proxies, it is an excellent palaeo-climate archive for the Late Quaternary in the region. Furthermore, the ice-rich Ice Complex deposits are sensible to climatic change, i.e. climate warming. Because of the large-scale climatic changes at the transition from the Pleistocene to the Holocene, the Ice Complex was subject to extensive thermokarst processes since the Early Holocene. Permafrost deposits are not only an environmental indicator, but also an important climate factor. Tundra wetlands, which have developed in environments with aggrading permafrost, are considered a net sink for carbon, as organic matter is stored in peat or is syn-sedimentary frozen with permafrost aggradation. Contrary, the Holocene thermokarst development resulted in permafrost degradation and thus the release of formerly stored organic carbon. Modern tundra wetlands are also considered an important source for the climate-driving gas methane, originating mainly from microbial activity in the seasonal active layer. Most scenarios for future global climate development predict a strong warming trend especially in the Arctic. Consequently, for the understanding of how permafrost deposits will react and contribute to such scenarios, it is necessary to investigate and evaluate ice-rich permafrost deposits like the widespread Ice Complex as climate indicator and climate factor during the Late Quaternary. Such investigations are a pre-condition for the precise modelling of future developments in permafrost distribution and the influence of permafrost degradation on global climate. The focus of this work, which was conducted within the frame of the multi-disciplinary joint German-Russian research projects "Laptev Sea 2000" (1998-2002) and "Dynamics of Permafrost" (2003-2005), was twofold. First, the possibilities of using remote sensing and terrain modelling techniques for the observation of periglacial landscapes in Northeast Siberia in their present state was evaluated and applied to key sites in the Laptev Sea coastal lowlands. The key sites were situated in the eastern Laptev Sea (Bykovsky Peninsula and Khorogor Valley) and the western Laptev Sea (Cape Mamontovy Klyk region). For this task, techniques using CORONA satellite imagery, Landsat-7 satellite imagery, and digital elevation models were developed for the mapping of periglacial structures, which are especially indicative of permafrost degradation. The major goals were to quantify the extent of permafrost degradation structures and their distribution in the investigated key areas, and to establish techniques, which can be used also for the investigation of other regions with thermokarst occurrence. Geographical information systems were employed for the mapping, the spatial analysis, and the enhancement of classification results by rule-based stratification. The results from the key sites show, that thermokarst, and related processes and structures, completely re-shaped the former accumulation plain to a strongly degraded landscape, which is characterised by extensive deep depressions and erosional remnants of the Late Pleistocene surface. As a results of this rapid process, which in large parts happened within a short period during the Early Holocene, the hydrological and sedimentological regime was completely changed on a large scale. These events resulted also in a release of large amounts of organic carbon. Thermokarst is now the major component in the modern periglacial landscapes in terms of spatial extent, but also in its influence on hydrology, sedimentation and the development of vegetation assemblages. Second, the possibilities of using remote sensing and terrain modelling as a supplementary tool for palaeo-environmental reconstructions in the investigated regions were explored. For this task additionally a comprehensive cryolithological field database was developed for the Bykovsky Peninsula and the Khorogor Valley, which contains previously published data from boreholes, outcrops sections, subsurface samples, and subsurface samples, as well as additional own field data. The period covered by this database is mainly the Late Pleistocene and the Holocene, but also the basal deposits of the sedimentary sequence, interpreted as Pliocene to Early Pleistocene, are contained. Remote sensing was applied for the observation of periglacial strucures, which then were successfully related to distinct landscape development stages or time intervals in the investigation area. Terrain modelling was used for providing a general context of the landscape development. Finally, a scheme was developed describing mainly the Late Quaternary landscape evolution in this area. A major finding was the possibility of connecting periglacial surface structures to distinct landscape development stages, and thus use them as additional palaeo-environmental indicator together with other proxies for area-related palaeo-environmental reconstructions. In the landscape evolution scheme, i.e. of the genesis of the Late Pleistocene Ice Complex and the Holocene thermokarst development, some new aspects are presented in terms of sediment source and general sedimentation conditions. This findings apply also for other sites in the Laptev Sea region.}, subject = {Dauerfrostboden}, language = {en} } @phdthesis{Knoerich2005, author = {Kn{\"o}rich, Andrea Claudia}, title = {Investigations on the importance of early diagenetic processes for the mineralogical stabilisation and lithification of heterozoan carbonate assemblages : (Oligo-Miocene, Maltese Islands and Sicily)}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-5405}, school = {Universit{\"a}t Potsdam}, year = {2005}, abstract = {Diagenetic studies of carbonate rocks focused for a long time on photozoan carbonate assemblages deposited in tropical climates. The results of these investigations were taken as models for the diagenetic evolution of many fossil carbonates. Only in recent years the importance of heterozoan carbonates, generally formed out of the tropics or in deeper waters, was realized. Diagenetic studies focusing on this kind of rocks are still scarce, but indicate that the diagenetic evolution of these rocks might be a better model for many fossil carbonate settings ("calcite-sea" carbonates) than the photozoan model used before. This study deals with the determination of the diagenetic pathways and environments in such shallow-water heterozoan carbonate assemblages. Special emphasis is put on the identification of early, near-seafloor diagenetic processes and on the evaluation of the amount of constructive diagenesis in form of cementation in this diagenetic environment. As study area the Central Mediterranean, the Maltese Islands and Sicily, was chosen. Here two sections were logged in Olio-Miocene shallow-water carbonates consisting of different kinds of heterozoan assemblages. The study area is very suitable for the investigation of constructive early diagenetic processes, as the rocks were never deeply buried and burial diagenetic pressure solution and cementation as cause of lithification could be ruled out. Nevertheless, the carbonate rocks are well lithified and form steep cliffs, implying cementation/lithification in another, shallower diagenetic environment. To determine the diagenetic pathways and environments, detailed transmitted light and cathodoluminescence petrography was carried out on thin sections. Furthermore the stable isotope (δ18O and δ13C) composition of the bulk rock, single biota and single cement phases was determined, as well as the major and trace element composition of the single cement phases. Petrographically three (Sicily) to four (Maltese Islands) cementation phases, two phases of fabric selective and one of non-fabric selective dissolution, one phase of neomorphism and one of chemical compaction could be distinguished. The stable isotope measurements of the single cement phases pointed to cement precipitation from marine, marine-derived and meteoric waters. The trace element analysis indicated precipitation under reducing conditions, (A) in an open system with low rock-water interaction on the Maltese Islands and (B) in a closed system with high rock-water interaction on Sicily. For the closed systems case, aragonite as cement source could be concluded because its chemical composition was preserved in the newly formed cements. By integrating these results, diagenetic pathways and environments for the investigated locations were established, and the cement source(s) in the different environments were determined. The diagenetic evolution started in the marine environment with the precipitation of fibrous/fibrous-bladed and epitaxial cement I. These cements formed as High Mg Calcite (HMC) directly out of marine waters. The paleoenvironmentally shallowest part of the section on the Maltese Islands was also exposed to meteoric diagenetic fluids. This meteoric influence lead to the dissolution of aragonitic and HMC skeletons, which sourced the cementation by Low Mg Calcitic (LMC) epitaxial cement II in this part of the Maltese section. Entering the burial-marine environment the main part of dissolution, cementation and neomorphism started to take place. The elevated CO2 content in this environment, caused by the decay of organic matter, lead to the dissolution of aragonitic skeletons, which sourced the cementation by LMC epitaxial cement II, bladed and blocky cements. The earlier precipitated HMC cement phases were either partly dissolved (epitaxial cement I) or neomorphosed to LMC (fibrous/fibrous-bladed and epitaxial cement I). In the burial environment weak chemical compaction took place without sourcing significant amounts of cementation. In a last phase the rocks entered the meteoric realm by uplift, which caused non-fabric selective dissolution. This study shows that early diagenetic processes, taking place at or just below the sediment-water-interface, are very important for the mineralogical stabilization of heterozoan carbonate strata. The main amount of constructive diagenesis in form of cementation takes place in this environment, sourced by dissolution of aragonitic and, to a lesser degree, of HMC skeletons. The results of this study imply that the primary amount of aragonitic skeletons in heterozoan carbonate sediments must be carefully assessed, as they are the main early diagenetic cement source. In fossil heterozoan carbonate rocks, aragonitic skeletons might be the cement source even when no relict structures like micritic envelops or biomolds are preserved. In general, the diagenetic evolution of heterozoan carbonate rocks is a good model for the diagenesis of "calcite-sea" time carbonate rocks.}, subject = {Fr{\"u}hdiagenese}, language = {en} } @phdthesis{Sobiesiak2004, author = {Sobiesiak, Monika}, title = {Fault plane structure of the 1995 Antofagasta Earthquake (Chile) derived from local seismological parameters}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-2430}, school = {Universit{\"a}t Potsdam}, year = {2004}, abstract = {Fault planes of large earthquakes incorporate inhomogeneous structures. This can be observed in teleseismic studies through the spatial distribution of slip and seismic moment release caused by the mainshock. Both parameters are often concentrated on patches on the fault plane with much higher values for slip and moment release than their adjacent areas. These patches are called asperities which obviously have a strong influence on the mainshock rupture propagation. Condition and properties of structures in the fault plane area, which are responsible for the evolution of such asperities or their significance on damage distributions of future earthquakes, are still not well understood and subject to recent geo-scientific studies. In the presented thesis asperity structures are identified on the fault plane of the Mw=8.0 Antofagasta earthquake in northern Chile which occurred on 30th of July, 1995. It was a thrust-type event in the seismogenic zone between the subducting pacific Nazca plate and the overriding South American plate. In cooperation of the German Task Force for Earthquakes and the CINCA'95 project a network of up to 44 seismic stations was set up to record the aftershock sequence. The seaward extension of the network with 9 OBH stations increased significantly the precision of hypocenter determinations. They were distributed mainly on the fault plane itself around the city of Antofagasta and Mejillones Peninsula. The asperity structures were recognized here by the spatial variations of local seismological parameters; at first by the spatial distribution of the seismic b-value on the fault plane, derived from the magnitude-frequency relation of Gutenberg-Richter. The correlation of this b-value map with other parameters like the mainshock source time function, the gravity isostatic residual anomalies, the aftershock radiated seismic energy distribution and the vp/vs ratios from a local earthquake tomograhpy study revealed some ideas about the composition and asperity generating processes. The investigation of 295 aftershock focal mechanism solutions supported the resulting fault plane structure and proposed a 3D similar stress state in the area of the Antofagasta fault plane.}, language = {en} } @phdthesis{Backers2004, author = {Backers, Tobias}, title = {Fracture toughness determination and micromechanics of rock under Mode I and Mode II loading}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-2294}, school = {Universit{\"a}t Potsdam}, year = {2004}, abstract = {This thesis work describes a new experimental method for the determination of Mode II (shear) fracture toughness, KIIC of rock and compares the outcome to results from Mode I (tensile) fracture toughness, KIC, testing using the International Society of Rock Mechanics Chevron-Bend method.Critical Mode I fracture growth at ambient conditions was studied by carrying out a series of experiments on a sandstone at different loading rates. The mechanical and microstructural data show that time- and loading rate dependent crack growth occurs in the test material at constant energy requirement.The newly developed set-up for determination of the Mode II fracture toughness is called the Punch-Through Shear test. Notches were drilled to the end surfaces of core samples. An axial load punches down the central cylinder introducing a shear load in the remaining rock bridge. To the mantle of the cores a confining pressure may be applied. The application of confining pressure favours the growth of Mode II fractures as large pressures suppress the growth of tensile cracks.Variation of geometrical parameters leads to an optimisation of the PTS- geometry. Increase of normal load on the shear zone increases KIIC bi-linear. High slope is observed at low confining pressures; at pressures above 30 MPa low slope increase is evident. The maximum confining pressure applied is 70 MPa. The evolution of fracturing and its change with confining pressure is described.The existence of Mode II fracture in rock is a matter of debate in the literature. Comparison of the results from Mode I and Mode II testing, mainly regarding the resulting fracture pattern, and correlation analysis of KIC and KIIC to physico-mechanical parameters emphasised the differences between the response of rock to Mode I and Mode II loading. On the microscale, neither the fractures resulting from Mode I the Mode II loading are pure mode fractures. On macroscopic scale, Mode I and Mode II do exist.}, language = {en} } @phdthesis{Thiede2005, author = {Thiede, Rasmus Christoph}, title = {Tectonic and climatic controls on orogenic processes : the Northwest Himalaya, India}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-2281}, school = {Universit{\"a}t Potsdam}, year = {2005}, abstract = {The role of feedback between erosional unloading and tectonics controlling the development of the Himalaya is a matter of current debate. The distribution of precipitation is thought to control surface erosion, which in turn results in tectonic exhumation as an isostatic compensation process. Alternatively, subsurface structures can have significant influence in the evolution of this actively growing orogen. Along the southern Himalayan front new 40Ar/39Ar white mica and apatite fission track (AFT) thermochronologic data provide the opportunity to determine the history of rock-uplift and exhumation paths along an approximately 120-km-wide NE-SW transect spanning the greater Sutlej region of the northwest Himalaya, India. 40Ar/39Ar data indicate, consistent with earlier studies that first the High Himalayan Crystalline, and subsequently the Lesser Himalayan Crystalline nappes were exhumed rapidly during Miocene time, while the deformation front propagated to the south. In contrast, new AFT data delineate synchronous exhumation of an elliptically shaped, NE-SW-oriented ~80 x 40 km region spanning both crystalline nappes during Pliocene-Quaternary time. The AFT ages correlate with elevation, but show within the resolution of the method no spatial relationship to preexisting major tectonic structures, such as the Main Central Thrust or the Southern Tibetan Fault System. Assuming constant exhumation rates and geothermal gradient, the rocks of two age vs. elevation transects were exhumed at ~1.4 \&\#177;0.2 and ~1.1 \&\#177;0.4 mm/a with an average cooling rate of ~50-60 \&\#176;C/Ma during Pliocene-Quaternary time. The locus of pronounced exhumation defined by the AFT data coincides with a region of enhanced precipitation, high discharge, and sediment flux rates under present conditions. We therefore hypothesize that the distribution of AFT cooling ages might reflect the efficiency of surface processes and fluvial erosion, and thus demonstrate the influence of erosion in localizing rock-uplift and exhumation along southern Himalayan front, rather than encompassing the entire orogen.Despite a possible feedback between erosion and exhumation along the southern Himalayan front, we observe tectonically driven, crustal exhumation within the arid region behind the orographic barrier of the High Himalaya, which might be related to and driven by internal plateau forces. Several metamorphic-igneous gneiss dome complexes have been exhumed between the High Himalaya to the south and Indus-Tsangpo suture zone to the north since the onset of Indian-Eurasian collision ~50 Ma ago. Although the overall tectonic setting is characterized by convergence the exhumation of these domes is accommodated by extensional fault systems.Along the Indian-Tibetan border the poorly described Leo Pargil metamorphic-igneous gneiss dome (31-34\&\#176;N/77-78\&\#176;E) is located within the Tethyan Himalaya. New field mapping, structural, and geochronologic data document that the western flank of the Leo Pargil dome was formed by extension along temporally linked normal fault systems. Motion on a major detachment system, referred to as the Leo Pargil detachment zone (LPDZ) has led to the juxtaposition of low-grade metamorphic, sedimentary rocks in the hanging wall and high-grade metamorphic gneisses in the footwall. However, the distribution of new 40Ar/39Ar white mica data indicate a regional cooling event during middle Miocene time. New apatite fission track (AFT) data demonstrate that subsequently more of the footwall was extruded along the LPDZ in a brittle stage between 10 and 2 Ma with a minimum displacement of ~9 km. Additionally, AFT-data indicate a regional accelerated cooling and exhumation episode starting at ~4 Ma. Thus, tectonic processes can affect the entire orogenic system, while potential feedbacks between erosion and tectonics appear to be limited to the windward sides of an orogenic systems.}, language = {en} } @phdthesis{Bookhagen2004, author = {Bookhagen, Bodo}, title = {Late quaternary climate changes and landscape evolution in the Northwest Himalaya : geomorphologic processes in the Indian Summer Monsoon Domain}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-0001956}, school = {Universit{\"a}t Potsdam}, year = {2004}, abstract = {The India-Eurasia continental collision zone provides a spectacular example of active mountain building and climatic forcing. In order to quantify the critically important process of mass removal, I analyzed spatial and temporal precipitation patterns of the oscillating monsoon system and their geomorphic imprints. I processed passive microwave satellite data to derive high-resolution rainfall estimates for the last decade and identified an abnormal monsoon year in 2002. During this year, precipitation migrated far into the Sutlej Valley in the northwestern part of the Himalaya and reached regions behind orographic barriers that are normally arid. There, sediment flux, mean basin denudation rates, and channel-forming processes such as erosion by debris-flows increased significantly. Similarly, during the late Pleistocene and early Holocene, solar forcing increased the strength of the Indian summer monsoon for several millennia and presumably lead to analogous precipitation distribution as were observed during 2002. However, the persistent humid conditions in the steep, high-elevation parts of the Sutlej River resulted in deep-seated landsliding. Landslides were exceptionally large, mainly due to two processes that I infer for this time: At the onset of the intensified monsoon at 9.7 ka BP heavy rainfall and high river discharge removed material stored along the river, and lowered the baselevel. Second, enhanced discharge, sediment flux, and increased pore-water pressures along the hillslopes eventually lead to exceptionally large landslides that have not been observed in other periods. The excess sediments that were removed from the upstream parts of the Sutlej Valley were rapidly deposited in the low-gradient sectors of the lower Sutlej River. Timing of downcutting correlates with centennial-long weaker monsoon periods that were characterized by lower rainfall. I explain this relationship by taking sediment flux and rainfall dynamics into account: High sediment flux derived from the upstream parts of the Sutlej River during strong monsoon phases prevents fluvial incision due to oversaturation the fluvial sediment-transport capacity. In contrast, weaker monsoons result in a lower sediment flux that allows incision in the low-elevation parts of the Sutlej River.}, language = {en} } @phdthesis{Kesten2004, author = {Kesten, Dagmar}, title = {Structural observations at the southern Dead Sea Transform from seismic reflection data and ASTER satellite images}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-0001807}, school = {Universit{\"a}t Potsdam}, year = {2004}, abstract = {Die folgende Arbeit ist Teil des multidisziplin{\"a}ren Projektes DESERT (DEad SEa Rift Transect), welches seit dem Jahr 2000 im Nahen Osten durchgef{\"u}hrt wird. Dabei geht es prim{\"a}r um die Struktur der s{\"u}dlichen Dead Sea Transform (DST; Tote-Meer-Transformst{\"o}rung), Plattengrenze zwischen Afrika (Sinai) und der Arabischen Mikroplatte. Seit dem Mioz{\"a}n betr{\"a}gt der sinistrale Versatz an dieser bedeutenden aktiven Blattverschiebung mehr als 100 km. Das steilwinkelseismische (NVR) Experiment von DESERT querte die DST im Arava Tal zwischen Rotem Meer und Totem Meer, wo die Hauptst{\"o}rung auch Arava Fault genannt wird. Das 100 km lange Profil erstreckte sich von Sede Boqer/Israel im Nordwesten nach Ma'an/Jordanien im S{\"u}dosten und f{\"a}llt mit dem zentralen Teil einer weitwinkelseismischen Profillinie zusammen. Steilwinkelseismische Messungen stellen bei der Bestimmung der Krustenstruktur bis zur Krusten/Mantel-Grenze ein wichtiges Instrument dar. Obwohl es kaum m{\"o}glich ist, steilstehende St{\"o}rungszonen direkt abzubilden, geben abrupte Ver{\"a}nderungen des Reflektivit{\"a}tsmuster oder pl{\"o}tzlich endende Reflektoren indirekte Hinweise auf Transformbewegung. Da bis zum DESERT Experiment keine anderen reflexionsseismischen Messungen {\"u}ber die DST ausgef{\"u}hrt worden waren, waren wichtige Aspekte dieser Transform-Plattengrenze und der damit verbundenen Krustenstruktur nicht bekannt. Mit dem Projekt sollte deshalb untersucht werden, wie sich die DST sowohl in der oberen als auch in der unteren Kruste manifestiert. Zu den Fragestellungen geh{\"o}rte unter anderem, ob sich die DST bis in den Mantel fortsetzt und ob ein Versatz der Krusten/Mantel-Grenze beobachtet werden kann. So ein Versatz ist von anderen großen Transformst{\"o}rungen bekannt. In der vorliegenden Arbeit werden zun{\"a}chst die Methode der Steilwinkelseismik und die Datenverarbeitung kurz erl{\"a}utert, bevor die Daten geologisch interpretiert werden. Bei der Interpetation werden die Ergebnisse anderer relevanter Studien ber{\"u}cksichtigt. Geologische Gel{\"a}ndearbeiten im Gebiet des NVR Profiles ergaben, dass die Arava Fault zum Teil charakterisiert ist durch niedrige Steilstufen in den neogenen Sedimenten, durch kleine Druckr{\"u}cken oder Rhomb-Gr{\"a}ben. Ein typischer Aufbau der St{\"o}rungszone mit einem St{\"o}rungskern, einer st{\"o}rungsbezogenen Deformationszone und einem undeformierten Ausgangsgestein, wie er von anderen großen St{\"o}rungszonen beschrieben worden ist, konnte nicht gefunden werden. Deshalb wurden zur Erg{\"a}nzung der Reflexionsseismik, welche vor allem die tieferen Krustenstrukturen abbildet, ASTER (Advanced Spacebourne Thermal Emission and Reflection Radiometer) Satellitendaten herangezogen, um oberfl{\"a}chennahe Deformation und neotektonische Aktivit{\"a}t zu bestimmen.}, language = {en} } @phdthesis{Demory2004, author = {Demory, Fran{\c{c}}ois}, title = {Paleomagnetic dating of climatic events in Late Quaternary sediments of Lake Baikal (Siberia)}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-0001720}, school = {Universit{\"a}t Potsdam}, year = {2004}, abstract = {Der Baikalsee ist ein ideales Klimaarchiv f{\"u}r die Mitte Eurasiens. In dieser Arbeit wurde gesteinsmagnetische und paleomagnetische Analysen an hemipelagischen Sequenzen von vier Lokationen analysiert. Die Kerne erreichen ein Alter von maximal 300 ky. In Kombination mit TEM, XRD, XRF und geochemischen Analysen zeigt die gesteinsmagnetische Studie, dass detritischer Magnetit das magnetische Signal der glazialen Sedimente dominiert. Die magnetischen Signale der interglazialen Sedimente wurden durch diagenetische Prozesse ver{\"a}ndert. Mittels HIRM k{\"o}nnen H{\"a}matit und Goethit quantifiziert werden. Diese Methode eignet sich, den detritischen Eintrag in den Baikalsee abzusch{\"a}tzen. Relative Paleointensit{\"a}ten des Erdmagnetfeldes ergaben reproduizerbare Muster, welche in Korrelation mit gutdatierten Referenzproben die Ableitung eines alternativen Altersmodells f{\"u}r die Datierung der Baikalsedimente erm{\"o}glichten. Bei Anwendung des paleomagnetischen Altersmodells beobachtet man, dass die Abk{\"u}hlung im Baikalgebiet und im Oberfl{\"a}chenwasser des Nordatlantiks wie sie aus den \&\#948;18 O-Werten planktonischer Foraminiferen abgeleitet werden kann, zeitgleich ist. Wird das aus benthischen \&\#948;18 O-Werten abgeleitete Altermdodell auf den Baikalsee angewandt, ergibt sich eine deutliche Zeitverschiebung. Das benthische Altersmodell repr{\"a}sentiert die globale Ver{\"a}nderung des Eisvolumens, welche sp{\"a}ter als die V{\"a}nderung der Oberfl{\"a}chenwassertemperatur auftritt. Die Kompilation paleomagnetischer Kurven ergab eine neue relative Paleointensit{\"a}tskurve \“Baikal 200\”. Mittels Korngr{\"o}ssenanalyse des Detritus konnten drei Faziestypen mit unterschiedlicher Sedimentationsdynamik unterschieden werden: 1) Glaziale Peroiden werden durch hohe Tongehalte infolge von Windeintrag und durch grobe Sandfraktion mittels Transport durch lokale Winde {\"u}ber das Eis charakterisiert. Dieser Faziestyp deutet auf arides Klima. 2) W{\"a}hrend der Glazial/Interglazial-{\"U}berg{\"a}nge steigt die Siltfraktion an. Dies deutet auf erh{\"o}hte Feuchtigkeit und damit verbunden erh{\"o}hte Sedimentdynamik. Windtransport und in den Schnee der Eisdecke eingetragener Staub sind die vorherrschenden Prozesse, welche den Silt in hemipelagischer Position zur Ablagerung bringen. 3) W{\"a}hrend des klimatischen Optimum des Eeemian werden Gr{\"o}sse und Quantit{\"a}t des Silts minimal, was auf eine geschlossene Vegetationsdecke im Hinterland deutet.}, language = {en} } @phdthesis{Hahne2004, author = {Hahne, Kai}, title = {Detektion eines mesozoischen Gangschwarmes in NW Namibia und Rekonstruktion regionaler Spannungszust{\"a}nde w{\"a}hrend der S{\"u}datlantik{\"o}ffnung}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-0001687}, school = {Universit{\"a}t Potsdam}, year = {2004}, abstract = {Gangschw{\"a}rme nehmen eine bedeutende Stellung im Verst{\"a}ndnis zur kontinentalen Fragmentierung ein. Einerseits markieren sie das Pal{\"a}o-Spannungsfeld und helfen bei der Rekonstruktion der strukturellen Entwicklung der gedehnten Lithosph{\"a}re, andererseits gibt ihre petrologische Beschaffenheit Aufschluß {\"u}ber die Entstehung des Magmas, Aufstieg und Platznahme und schließlich erlaubt ihre Altersbestimmung die Rekonstruktion einer chronologischen Reihenfolge magmatischer und struktureller Ereignisse. Das Arbeitsgebiet im namibianischen Henties Bay-Outjo Dike swarm (HOD) war zur Zeit der Unterkreide einem Rifting mit intensiver Platznahme von {\"u}berwiegend mafischen G{\"a}ngen unterworfen. Geochemische Signaturen weisen die G{\"a}nge als erodierte F{\"o}rderkan{\"a}le der Etendeka Plateaubasalte aus. Durch den Einsatz von hochaufl{\"o}senden Aeromagnetik- und Satellitendaten war es m{\"o}glich, die Geometrie des Gangschwarmes erstmals detailliert synoptisch zu erfassen. Viele zu den Schichten des Grundgebirges foliationsparallel verlaufende magnetische Anomalien k{\"o}nnen unaufgeschlossenen kretazischen Intrusionen zugeordnet werden. Bei der nach Norden propagierenden S{\"u}datlantik{\"o}ffnung spielte die unterschiedliche strukturelle Vorzeichnung durch die neoproterozoischen Falteng{\"u}rtel sowie Lithologie und Spannungsfeld des Angola Kratons eine bedeutende Rolle. Im k{\"u}stennahen zentralen Bereich war dank der Vorzeichnung des Nordost streichenden Damara-Falteng{\"u}rtels ein Rifting in Nordwest-S{\"u}dost-Richtung dominierend, bis das Angola Kraton ein weiteres Fortscheiten nach Nordosten hemmte und die Vorzeichnung des Nordwest streichenden Kaoko-Falteng{\"u}rtels an der Westgrenze den weiteren Riftverlauf und die letztendlich erfolgreiche {\"O}ffnung des S{\"u}datlantiks bestimmte. Aus diesem Grund kann das Gebiet des HOD als ein failed rift betrachtet werden. Die Entwicklung des Spannungsfeldes im HOD kann folgendermaßen skizziert werden: 1. Platznahme von G{\"a}ngen bei gleichzeitig hoher Dehnungsrate und hohem Magmenfluß. 2. Platznahme von Zentralvulkanen entlang reaktivierter pal{\"a}ozoischer Lineamente bei Abnahme der Dehnungsrate und fortbestehendem hohen Magmenfluß. 3. Abnahme/Versiegen des Magmenflusses und neotektonische Bewegungen f{\"u}hren zur Bildung von Halbgr{\"a}ben.}, language = {de} } @phdthesis{Rimmele2003, author = {Rimmel{\´e}, Ga{\"e}tan}, title = {Structural and metamorphic evolution of the Lycian Nappes and the Menderes Massif (southwest Turkey) : geodynamic implications and correlations with the Aegean domain}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-0001094}, school = {Universit{\"a}t Potsdam}, year = {2003}, abstract = {West Anatolien, welches die {\"o}stliche laterale Verl{\"a}ngerung der {\"a}g{\"a}ischen Dom{\"a}ne darstellt, besteht aus mehreren tektono-metamorphen Einheiten, die Hochdruck/Niedrigtemperatur (HP/LT) Gesteine aufweisen. Einige dieser metamorphen Gesteine Zeugen der panafrikanischen oder der kimmerischen Orogenese sind, entstanden andere w{\"a}hrend die j{\"u}ngere Alpine Orogenese. Das Menderes Massiv, in der SW T{\"u}rkei, wird im N von Decken der Izmir-Ankara Suturzone, im E von der Afyon Zone sowie im S von den Lykischen Decken tektonisch {\"u}berlagert. In den Metasedimenten der Lykischen Decken und dem darunterliegenden Menderes Massiv treten weitverbreitete Vorkommen von Fe-Mg-Carpholith-f{\"u}hrenden Gesteinen auf. Diese neue Entdeckung belegt, dass beide Deckenkomplexe w{\"a}hrend der alpinen Orogenese unter HP/LT Bedingungen {\"u}berpr{\"a}gt wurden. Die P-T Bedingungen f{\"u}r die HP-Phase liegen bei 10-12 kbar/400\&\#176;C in den Lykischen Decken und 12-14 kbar/470-500\&\#176;C im s{\"u}dlichen Menderes Massiv, was eine Versenkung von min. 30 km w{\"a}hrend der Subduktion und Deckenstapelung dokumentiert. Die Analyse der duktilen Deformation sowie thermobarometrische Berechnungen zeigen, dass die Lykischen Metasedimente unterschiedliche Exhumierungspfade nach der gemeinsamen HP-Phase durchliefen. In Gesteinen, die weiter entfernt vom Kontakt der Lykischen Decken mit dem Menderes Massiv liegen, l{\"a}sst sich lediglich ein Hochdruck-Abk{\"u}hlungspfad belegen, der mit einer \„top-NNE\“ Bewegung an die Ak{\c{c}}akaya Scherzone gebunden ist. Diese Scherzone ist ein Intra-Deckenkontakt, der in den fr{\"u}hen Stadien, innerhalb des Stabilit{\"a}tsfeldes von Fe-Mg-Carpholith, der Exhumierung aktiv war. Die nahe am Kontakt mit dem Menderes Massiv gelegenen Gesteine weisen w{\"a}rmere Exhumierungspfade auf, die mit einer \„top-E\“ Scherung assoziiert sind. Diese Deformation erfolgte nach dem S-Transport der Lykischen Decken und somit zeitgleich mit der Reaktivierung des Kontakts der Lykischen Decken/Menderes Massiv als Hauptscherzone (der Gerit Scherzone), die eine sp{\"a}te Exhumierung der HP-Gesteine unter w{\"a}rmeren Bedingungen erlaubte. Die Hochdruckgesteine des s{\"u}dlichen Menderes Massiv weisen eine einfache isothermale Dekompression bei etwa 450\&\#176;C w{\"a}hrend der Exhumierung nach. Die begleitende Deformation w{\"a}hrend der Hochdruckphase und der Exhumierung ist durch eine starke N-S bis NE-SW\–Dehnung charakterisiert. Das Alter der Hochdruckmetamorphose in den Lykischen Decken kann zwischen oberster Kreide (j{\"u}ngste Sedimente in der Lykischen allochthonen Einheit) und Eoz{\"a}n (Kykladische Blauschiefer) festgelegt werden. Ein m{\"o}gliches Pal{\"a}oz{\"a}nes Alter kann somit angenommen werden. Das Alter der Hochdruckmetamorphose in den Deckschichten des Menderes Massiv liegt demnach zwischen mittlerem Pal{\"a}oz{\"a}n (oberste Metaolistostrome der Menderes \„Cover\“-Einheit) und dem mittleren Eoz{\"a}n (HP-Metamorphose in der Dilek-Sel{\c{c}}uk Region des Kykladenkomplex). Apatit-Spaltspur-Daten von beiden Seiten des Kontakts der Lykischen Decken/Menderes Massiv lassen darauf schließen, daß diese Gesteine im sp{\"a}ten Oligoz{\"a}n/fr{\"u}hen Mioz{\"a}n sehr nahe der Pal{\"a}o-Oberfl{\"a}che waren. Die hier dargestellten Arbeiten in den Lykischen Decken und im Menderes Massiv lassen auf die Existenz eines ausgedehnten alpinen HP-Metamorphose-G{\"u}rtels im SW der T{\"u}rkei schließen. Die Hochdruckgesteine wurden im Akkretionskomplex einer N-w{\"a}rtigen Subduktion des Neo-Tethys Ozeans gebildet, der sp{\"a}t-Kretazisch obduziert und dann in die fr{\"u}h-Terti{\"a}re Kontinentalkollision des passiven Randes (Anatolid-Taurid Block) mit der n{\"o}rdlichen Platte (Sakarya Mikrokontinent) miteinbezogen war. Im Eoz{\"a}n bestand der Akkretionskomplex aus drei gestapelten Hochdruckeinheiten. Die Unterste entspricht dem eingeschuppten Kern und Hochdruck-\„Cover\“ des Menderes Massivs. Die Mittlere besteht aus dem Kykladischen Blauschiefer-Komplex (Dilek-Sel{\c{c}}uk Einheit) und die oberste Einheit wird von den Hochdruck Lykischen Decken gebildet. W{\"a}hrend die Basiseinheiten der {\"a}g{\"a}ischen und anatolischen Region tektonisch unterschiedliche Pr{\"a}-mesozoische Geschichten durchliefen, wurden sie wahrscheinlich am Ende des Pal{\"a}ozikums zusammengef{\"u}hrt und durchliefen dann ein gemeinsame mesozoische Geschichte. Dann wurden die Basis und ihre Deckschichten, ebenso wie die Kykladischen Blauschiefer und Lykischen Decken, in {\"a}hnlich entstandene akkretion{\"a}re Komplexe w{\"a}hrend des Eoz{\"a}ns und Oligoz{\"a}ns involviert.}, language = {en} }