@article{FotiHollenderGarofaloetal.2017, author = {Foti, Sebastiano and Hollender, Fabrice and Garofalo, Flora and Albarello, Dario and Asten, Michael and Bard, Pierre-Yves and Comina, Cesare and Cornou, Cecile and Cox, Brady and Di Giulio, Giuseppe and Forbriger, Thomas and Hayashi, Koichi and Lunedei, Enrico and Martin, Antony and Mercerat, Diego and Ohrnberger, Matthias and Poggi, Valerio and Renalier, Florence and Sicilia, Deborah and Socco, Valentina}, title = {Guidelines for the good practice of surface wave analysis}, series = {Bulletin of earthquake engineering : official publication of the European Association for Earthquake Engineering}, volume = {16}, journal = {Bulletin of earthquake engineering : official publication of the European Association for Earthquake Engineering}, number = {6}, publisher = {Springer}, address = {Dordrecht}, issn = {1570-761X}, doi = {10.1007/s10518-017-0206-7}, pages = {2367 -- 2420}, year = {2017}, abstract = {Surface wave methods gained in the past decades a primary role in many seismic projects. Specifically, they are often used to retrieve a 1D shear wave velocity model or to estimate the V-s,V-30 at a site. The complexity of the interpretation process and the variety of possible approaches to surface wave analysis make it very hard to set a fixed standard to assure quality and reliability of the results. The present guidelines provide practical information on the acquisition and analysis of surface wave data by giving some basic principles and specific suggestions related to the most common situations. They are primarily targeted to non-expert users approaching surface wave testing, but can be useful to specialists in the field as a general reference. The guidelines are based on the experience gained within the InterPACIFIC project and on the expertise of the participants in acquisition and analysis of surface wave data.}, language = {en} } @article{DiGiulioSavvaidisOhrnbergeretal.2012, author = {Di Giulio, Giuseppe and Savvaidis, Alexandros and Ohrnberger, Matthias and Wathelet, Marc and Cornou, Cecile and Knapmeyer-Endrun, Brigitte and Renalier, Florence and Theodoulidis, Nikos and Bard, Pierre-Yves}, title = {Exploring the model space and ranking a best class of models in surface-wave dispersion inversion application at European strong-motion sites}, series = {Geophysics}, volume = {77}, journal = {Geophysics}, number = {3}, publisher = {Society of Exploration Geophysicists}, address = {Tulsa}, issn = {0016-8033}, doi = {10.1190/GEO2011-0116.1}, pages = {B147 -- B166}, year = {2012}, abstract = {The inversion of surface-wave dispersion curve to derive shear-wave velocity profile is a very delicate process dealing with a nonunique problem, which is strongly dependent on the model space parameterization. When independent and reliable information is not available, the selection of most representative models within the ensemble produced. by the inversion is often difficult. We implemented a strategy in the inversion of dispersion curves able to investigate the influence of the parameterization of the model space and to select a "best" class of models. We analyzed surface-wave dispersion curves measured at 14 European strong..-motion sites within the NERIES EC-Project. We focused on the inversion task exploring the model space by means of four distinct pararneterization classes composed of layers progressively added over a half-space. The classes differ in the definition of the shear-wave velocity profile; we considered models with uniform velocity as well as models with increasing velocity with depth. At each site and for each model parameterization, we performed an extensive surface-wave inversion (200,100 models for five seeds) using the conditional neighborhood algorithm. We addressed the model evaluation following the corrected Akaike's information criterion (AlCc) that combines the concept of misfit to the number of degrees of freedom of the system. The misfit was computed as least-squares estimation between theoretical and observed dispersion curve. The model complexity was accounted in a penalty term by AlCc. By applying such inversion strategy on 14 strong-motion sites, we found that the best parameterization of the model space is mostly three to four layers over a half-space: where the shear-wave velocity of the uppermost layers can follow uniform or power-law dependence with depth. The shear-wave velocity profiles derived by inversion agree with shear-wave velocity profiles provided by borehole surveys at approximately 80\% of the sites.}, language = {en} }