@article{KuehnRiggelsenScherbaum2011, author = {K{\"u}hn, Nicolas M. and Riggelsen, Carsten and Scherbaum, Frank}, title = {Modeling the joint probability of earthquake, site, and ground-motion parameters using bayesian networks}, series = {Bulletin of the Seismological Society of America}, volume = {101}, journal = {Bulletin of the Seismological Society of America}, number = {1}, publisher = {Seismological Society of America}, address = {El Cerrito}, issn = {0037-1106}, doi = {10.1785/0120100080}, pages = {235 -- 249}, year = {2011}, abstract = {Bayesian networks are a powerful and increasingly popular tool for reasoning under uncertainty, offering intuitive insight into (probabilistic) data-generating processes. They have been successfully applied to many different fields, including bioinformatics. In this paper, Bayesian networks are used to model the joint-probability distribution of selected earthquake, site, and ground-motion parameters. This provides a probabilistic representation of the independencies and dependencies between these variables. In particular, contrary to classical regression, Bayesian networks do not distinguish between target and predictors, treating each variable as random variable. The capability of Bayesian networks to model the ground-motion domain in probabilistic seismic hazard analysis is shown for a generic situation. A Bayesian network is learned based on a subset of the Next Generation Attenuation (NGA) dataset, using 3342 records from 154 earthquakes. Because no prior assumptions about dependencies between particular parameters are made, the learned network displays the most probable model given the data. The learned network shows that the ground-motion parameter (horizontal peak ground acceleration, PGA) is directly connected only to the moment magnitude, Joyner-Boore distance, fault mechanism, source-to-site azimuth, and depth to a shear-wave horizon of 2: 5 km/s (Z2.5). In particular, the effect of V-S30 is mediated by Z2.5. Comparisons of the PGA distributions based on the Bayesian networks with the NGA model of Boore and Atkinson (2008) show a reasonable agreement in ranges of good data coverage.}, language = {en} } @article{KuehnScherbaum2015, author = {K{\"u}hn, Nico M. and Scherbaum, Frank}, title = {Ground-motion prediction model building: a multilevel approach}, series = {Bulletin of earthquake engineering : official publication of the European Association for Earthquake Engineering}, volume = {13}, journal = {Bulletin of earthquake engineering : official publication of the European Association for Earthquake Engineering}, number = {9}, publisher = {Springer}, address = {Dordrecht}, issn = {1570-761X}, doi = {10.1007/s10518-015-9732-3}, pages = {2481 -- 2491}, year = {2015}, abstract = {A Bayesian ground-motion model is presented that directly estimates the coefficients of the model and the correlation between different ground-motion parameters of interest. The model is developed as a multi-level model with levels for earthquake, station and record terms. This separation allows to estimate residuals for each level and thus the estimation of the associated aleatory variability. In particular, the usually estimated within-event variability is split into a between-station and between-record variability. In addition, the covariance structure between different ground-motion parameters of interest is estimated for each level, i.e. directly the between-event, between-station and between-record correlation coefficients are available. All parameters of the model are estimated via Bayesian inference, which allows to assess their epistemic uncertainty in a principled way. The model is developed using a recently compiled European strong-motion database. The target variables are peak ground velocity, peak ground acceleration and spectral acceleration at eight oscillator periods. The model performs well with respect to its residuals, and is similar to other ground-motion models using the same underlying database. The correlation coefficients are similar to those estimated for other parts of the world, with nearby periods having a high correlation. The between-station, between-event and between-record correlations follow generally a similar trend.}, language = {en} } @article{KummerowKindOnckenetal.2004, author = {Kummerow, J. and Kind, Rainer and Oncken, Onno and Giese, Peter and Ryberg, Trond and Wylegalla, Kurt and Scherbaum, Frank}, title = {A natural and controlled source seismic profile through the Eastern Alps : TRANSALP}, year = {2004}, abstract = {The combined passive and active seismic TRANSALP experiment produced an unprecedented high-resolution crustal image of the Eastern Alps between Munich and Venice. The European and Adriatic Mohos (EM and AM, respectively) are clearly imaged with different seismic techniques: near-vertical incidence reflections and receiver functions (RFs). The European Moho dips gently southward from 35 km beneath the northern foreland to a maximum depth of 55 km beneath the central part of the Eastern Alps, whereas the Adriatic Moho is imaged primarily by receiver functions at a relatively constant depth of about 40 km. In both data sets, we have also detected first-order Alpine shear zones, such as the Helvetic detachment, Inntal fault and SubTauern ramp in the north. Apart from the Valsugana thrust, receiver functions in the southern part of the Eastern Alps have also observed a north dipping interface, which may penetrate the entire Adriatic crust [Adriatic Crust Interface (ACI)]. Deep crustal seismicity may be related to the ACI. We interpret the ACI as the currently active retroshear zone in the doubly vergent Alpine collisional belt. (C) 2004 Elsevier B.V. All rights reserved}, language = {en} } @article{KuleshHolschneiderDialloetal.2005, author = {Kulesh, Michail and Holschneider, Matthias and Diallo, Mamadou Sanou and Xie, Q. and Scherbaum, Frank}, title = {Modeling of wave dispersion using continuous wavelet transforms}, issn = {0033-4553}, year = {2005}, abstract = {In the estimate of dispersion with the help of wavelet analysis considerable emphasis has been put on the extraction of the group velocity using the modulus of the wavelet transform. In this paper we give an asymptotic expression of the full propagator in wavelet space that comprises the phase velocity as well. This operator establishes a relationship between the observed signals at two different stations during wave propagation in a dispersive and attenuating medium. Numerical and experimental examples are presented to show that the method accurately models seismic wave dispersion and attenuation}, language = {en} } @article{KuehnScherbaum2016, author = {Kuehn, Nicolas M. and Scherbaum, Frank}, title = {A partially non-ergodic ground-motion prediction equation for Europe and the Middle East}, series = {Bulletin of earthquake engineering : official publication of the European Association for Earthquake Engineering}, volume = {14}, journal = {Bulletin of earthquake engineering : official publication of the European Association for Earthquake Engineering}, publisher = {Springer}, address = {Dordrecht}, issn = {1570-761X}, doi = {10.1007/s10518-016-9911-x}, pages = {2629 -- 2642}, year = {2016}, abstract = {A partially non-ergodic ground-motion prediction equation is estimated for Europe and the Middle East. Therefore, a hierarchical model is presented that accounts for regional differences. For this purpose, the scaling of ground-motion intensity measures is assumed to be similar, but not identical in different regions. This is achieved by assuming a hierarchical model, where some coefficients are treated as random variables which are sampled from an underlying global distribution. The coefficients are estimated by Bayesian inference. This allows one to estimate the epistemic uncertainty in the coefficients, and consequently in model predictions, in a rigorous way. The model is estimated based on peak ground acceleration data from nine different European/Middle Eastern regions. There are large differences in the amount of earthquakes and records in the different regions. However, due to the hierarchical nature of the model, regions with only few data points borrow strength from other regions with more data. This makes it possible to estimate a separate set of coefficients for all regions. Different regionalized models are compared, for which different coefficients are assumed to be regionally dependent. Results show that regionalizing the coefficients for magnitude and distance scaling leads to better performance of the models. The models for all regions are physically sound, even if only very few earthquakes comprise one region.}, language = {en} } @article{KruegerScherbaum2014, author = {Kr{\"u}ger, Frank and Scherbaum, Frank}, title = {The 29 September 1969, Ceres, South Africa, Earthquake: full waveform moment tensor inversion for point source and kinematic source parameters}, series = {Bulletin of the Seismological Society of America}, volume = {104}, journal = {Bulletin of the Seismological Society of America}, number = {1}, publisher = {Seismological Society of America}, address = {Albany}, issn = {0037-1106}, doi = {10.1785/0120130209}, pages = {576 -- 581}, year = {2014}, abstract = {The Ceres earthquake of 29 September 1969 is the largest known earthquake in southern Africa. Digitized analog recordings from Worldwide Standardized Seismographic Network stations (Powell and Fries, 1964) are used to retrieve the point source moment tensor and the most likely centroid depth of the event using full waveform modeling. A scalar seismic moment of 2.2-2.4 x 10(18) N center dot m corresponding to a moment magnitude of 6.2-6.3 is found. The analysis confirms the pure strike-slip mechanism previously determined from onset polarities by Green and Bloch (1971). Overall good agreement with the fault orientation previously estimated from local aftershock recordings is found. The centroid depth can be constrained to be less than 15 km. In a second analysis step, we use a higher order moment tensor based inversion scheme for simple extended rupture models to constrain the lateral fault dimensions. We find rupture propagated unilaterally for 4.7 s from east-southwest to west-northwest for about 17 km ( average rupture velocity of about 3: 1 km/s).}, language = {en} } @article{KohlerOhrnbergerScherbaumetal.2004, author = {Kohler, A. and Ohrnberger, Matthias and Scherbaum, Frank and Stange, S. and Kind, F.}, title = {Ambient vibration measurements in the Southern Rhine Graben close to Basle}, issn = {1593-5213}, year = {2004}, abstract = {This study presents results of ambient noise measurements from temporary single station and small-scale array deployments in the northeast of Basle. H/V spectral ratios were determined along various profiles crossing the eastern masterfault of the Rhine Rift Valley and the adjacent sedimentary rift fills. The fundamental H/V peak frequencies are decreasing along the profile towards the eastern direction being consistent with the dip of the tertiary sediments within the rift. Using existing empirical relationships between H/V frequency peaks and the depth of the dominant seismic contrast, derived on basis of the lambda/4-resonance hypothesis and a power law depth dependence of the S-wave velocity, we obtain thicknesses of the rift fill from about 155 m in the west to 280 in in the east. This is in agreement with previous studies. The array analysis of the ambient noise wavefield yielded a stable dispersion relation consistent with Rayleigh wave propagation velocities. We conclude that a significant amount of surface waves is contained in the observed wavefield. The computed ellipticity for fundamental mode Rayleigh waves for the velocity depth models used for the estimation of the sediment thicknesses is in agreement with the observed H/V spectra over a large frequency band}, language = {en} } @article{KoehlerOhrnbergerScherbaum2009, author = {Koehler, Andreas and Ohrnberger, Matthias and Scherbaum, Frank}, title = {Unsupervised feature selection and general pattern discovery using Self-Organizing Maps for gaining insights into the nature of seismic wavefields}, issn = {0098-3004}, doi = {10.1016/j.cageo.2009.02.004}, year = {2009}, abstract = {This study presents an unsupervised feature selection and learning approach for the discovery and intuitive imaging of significant temporal patterns in seismic single-station or network recordings. For this purpose, the data are parametrized by real-valued feature vectors for short time windows using standard analysis tools for seismic data, such as frequency-wavenumber, polarization, and spectral analysis. We use Self-Organizing Maps (SOMs) for a data-driven feature selection, visualization and clustering procedure, which is in particular suitable for high-dimensional data sets. Our feature selection method is based on significance testing using the Wald-Wolfowitz runs test for-individual features and on correlation hunting with SOMs in feature subsets. Using synthetics composed of Rayleigh and Love waves and real-world data, we show the robustness and the improved discriminative power of that approach compared to feature subsets manually selected from individual wavefield parametrization methods. Furthermore, the capability of the clustering and visualization techniques to investigate the discrimination of wave phases is shown by means of synthetic waveforms and regional earthquake recordings.}, language = {en} } @article{HaendelvonSpechtKuehnetal.2015, author = {H{\"a}ndel, Annabel and von Specht, Sebastian and Kuehn, Nicolas M. and Scherbaum, Frank}, title = {Mixtures of ground-motion prediction equations as backbone models for a logic tree: an application to the subduction zone in Northern Chile}, series = {Bulletin of earthquake engineering : official publication of the European Association for Earthquake Engineering}, volume = {13}, journal = {Bulletin of earthquake engineering : official publication of the European Association for Earthquake Engineering}, number = {2}, publisher = {Springer}, address = {Dordrecht}, issn = {1570-761X}, doi = {10.1007/s10518-014-9636-7}, pages = {483 -- 501}, year = {2015}, abstract = {In probabilistic seismic hazard analysis, different ground-motion prediction equations (GMPEs) are commonly combined within a logic tree framework. The selection of appropriate GMPEs, however, is a non-trivial task, especially for regions where strong motion data are sparse and where no indigenous GMPE exists because the set of models needs to capture the whole range of ground-motion uncertainty. In this study we investigate the aggregation of GMPEs into a mixture model with the aim to infer a backbone model that is able to represent the center of the ground-motion distribution in a logic tree analysis. This central model can be scaled up and down to obtain the full range of ground-motion uncertainty. The combination of models into a mixture is inferred from observed ground-motion data. We tested the new approach for Northern Chile, a region for which no indigenous GMPE exists. Mixture models were calculated for interface and intraslab type events individually. For each source type we aggregated eight subduction zone GMPEs using mainly new strong-motion data that were recorded within the Plate Boundary Observatory Chile project and that were processed within this study. We can show that the mixture performs better than any of its component GMPEs, and that it performs comparable to a regression model that was derived for the same dataset. The mixture model seems to represent the median ground motions in that region fairly well. It is thus able to serve as a backbone model for the logic tree.}, language = {en} } @article{HinzenReamerScherbaum2013, author = {Hinzen, Klaus-G and Reamer, Sharon K. and Scherbaum, Frank}, title = {Slow fourier transform}, series = {Seismological research letters}, volume = {84}, journal = {Seismological research letters}, number = {2}, publisher = {Seismological Society of America}, address = {Albany}, issn = {0895-0695}, doi = {10.1785/0220120139}, pages = {251 -- 257}, year = {2013}, language = {en} } @article{HinzenWeberScherbaum2004, author = {Hinzen, K. G. and Weber, B. and Scherbaum, Frank}, title = {On the resolution of H/V measurements to determine sediment thickness, a case study across a normal fault in the Lower Rhine Embayment, Germany}, issn = {1363-2469}, year = {2004}, abstract = {In recent years, H/V measurements have been increasingly used to map the thickness of sediment fill in sedimentary basins in the context of seismic hazard assessment. This parameter is believed to be an important proxy for the site effects in sedimentary basins (e.g. in the Los Angeles basin). Here we present the results of a test using this approach across an active normal fault in a structurally well known situation. Measurements on a 50 km long profile with 1 km station spacing clearly show a change in the frequency of the fundamental peak of H/V ratios with increasing thickness of the sediment layer in the eastern part of the Lower Rhine Embayment. Subsequently, a section of 10 km length across the Erft-Sprung system, a normal fault with ca. 750 m vertical offset, was measured with a station distance of 100 m. Frequencies of the first and second peaks and the first trough in the H/V spectra are used in a simple resonance model to estimate depths of the bedrock. While the frequency of the first peak shows a large scatter for sediment depths larger than ca. 500 m, the frequency of the first trough follows the changing thickness of the sediments across the fault. The lateral resolution is in the range of the station distance of 100 m. A power law for the depth dependence of the S-wave velocity derived from down hole measurements in an earlier study [Budny, 1984] and power laws inverted from dispersion analysis of micro array measurements [Scherbaum et al., 2002] agree with the results from the H/V ratios of this study}, language = {en} } @article{HiemerScherbaumRoessleretal.2011, author = {Hiemer, Stefan and Scherbaum, Frank and R{\"o}ßler, Dirk and K{\"u}hn, Nicolas}, title = {Determination of tau(0) and Rock Site kappa from Records of the 2008/2009 Earthquake Swarm in Western Bohemia}, series = {Seismological research letters}, volume = {82}, journal = {Seismological research letters}, number = {3}, publisher = {Seismological Society of America}, address = {El Cerrito}, issn = {0895-0695}, doi = {10.1785/gssrl.82.3.387}, pages = {387 -- 393}, year = {2011}, language = {en} } @misc{HiemerRoesslerScherbaum2010, author = {Hiemer, Stefan and R{\"o}ßler, Dirk and Scherbaum, Frank}, title = {Catalog of Swarm Earthquakes in Vogtland /West Bohemia in 2008/09}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-51710}, year = {2010}, abstract = {The document contains the catalog of earthquakes in Vogtland /West Bohemia within the period of 2008/10/19 -to- 2009/03/16. The events were recorded by a seismic mini-array operated by the Institute of Earthsciences, University of Postdam.}, language = {en} } @misc{HiemerRoesslerScherbaum2010, author = {Hiemer, Stefan and R{\"o}ßler, Dirk and Scherbaum, Frank}, title = {Catalog of Swarm Earthquakes in Vogtland /West Bohemia in 2008/09}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-53837}, year = {2010}, abstract = {The document contains the catalog of earthquakes in Vogtland /West Bohemia within the period of 2008/10/19 -to- 2009/03/16. The events were recorded by a seismic mini-array operated by the Institute of Earthsciences, University of Postdam.}, language = {en} } @article{HiemerRoesslerScherbaum2012, author = {Hiemer, Stefan and R{\"o}ßler, Dirk and Scherbaum, Frank}, title = {Monitoring the West Bohemian earthquake swarm in 2008/2009 by a temporary small-aperture seismic array}, series = {Journal of seismology}, volume = {16}, journal = {Journal of seismology}, number = {2}, publisher = {Springer}, address = {Dordrecht}, issn = {1383-4649}, doi = {10.1007/s10950-011-9256-5}, pages = {169 -- 182}, year = {2012}, abstract = {The most recent intense earthquake swarm in West Bohemia lasted from 6 October 2008 to January 2009. Starting 12 days after the onset, the University of Potsdam monitored the swarm by a temporary small-aperture seismic array at 10 km epicentral distance. The purpose of the installation was a complete monitoring of the swarm including micro-earthquakes (M (L) < 0). We identify earthquakes using a conventional short-term average/long-term average trigger combined with sliding-window frequency-wavenumber and polarisation analyses. The resulting earthquake catalogue consists of 14,530 earthquakes between 19 October 2008 and 18 March 2009 with magnitudes in the range of -aEuro parts per thousand 1.2 a parts per thousand currency signaEuro parts per thousand M (L) a parts per thousand currency signaEuro parts per thousand 2.7. The small-aperture seismic array substantially lowers the detection threshold to about M (c) = -aEuro parts per thousand 0.4, when compared to the regional networks operating in West Bohemia (M (c) > 0.0). In the course of this work, the main temporal features (frequency-magnitude distribution, propagation of back azimuth and horizontal slowness, occurrence rate of aftershock sequences and interevent-time distribution) of the recent 2008/2009 earthquake swarm are presented and discussed. Temporal changes of the coefficient of variation (based on interevent times) suggest that the swarm earthquake activity of the 2008/2009 swarm terminates by 12 January 2009. During the main phase in our studied swarm period after 19 October, the b value of the Gutenberg-Richter relation decreases from 1.2 to 0.8. This trend is also reflected in the power-law behavior of the seismic moment release. The corresponding total seismic moment release of 1.02x10(17) Nm is equivalent to M (L,max) = 5.4.}, language = {en} } @article{HaneyKummerowLangenbruchetal.2011, author = {Haney, Frank and Kummerow, J. and Langenbruch, C. and Dinske, C. and Shapiro, Serge A. and Scherbaum, Frank}, title = {Magnitude estimation for microseismicity induced during the KTB 2004/2005 injection experiment}, series = {Geophysics}, volume = {76}, journal = {Geophysics}, number = {6}, publisher = {Society of Exploration Geophysicists}, address = {Tulsa}, issn = {0016-8033}, doi = {10.1190/GEO2011-0020.1}, pages = {WC47 -- WC53}, year = {2011}, abstract = {We determined the magnitudes of 2540 microseismic events measured at one single 3C borehole geophone at the German Deep Drilling Site (known by the German acronym, KTB) during the injection phase 2004/2005. For this task we developed a three-step approach. First, we estimated local magnitudes of 104 larger events with a standard method based on amplitude measurements at near-surface stations. Second, we investigated a series of parameters to characterize the size of these events using the seismograms of the borehole sensor, and we compared them statistically with the local magnitudes. Third, we extrapolated the regression curve to obtain the magnitudes of 2436 events that were only measured at the borehole geophone. This method improved the magnitude of completeness for the KTB data set by more than one order down to M = -2.75. The resulting b-value for all events was 0.78, which is similar to the b-value obtained from taking only the greater events with standard local magnitude estimation from near-surface stations, b = 0.86. The more complete magnitude catalog was required to study the magnitude distribution with time and to characterize the seismotectonic state of the KTB injection site. The event distribution with time was consistent with prediction from theory assuming pore pressure diffusion as the underlying mechanism to trigger the events. The value we obtained for the seismogenic index of -4 suggested that the seismic hazard potential at the KTB site is comparatively low.}, language = {en} } @inproceedings{HainzlScherbaumZoeller2006, author = {Hainzl, Sebastian and Scherbaum, Frank and Z{\"o}ller, Gert}, title = {Spatiotemporal earthquake patterns}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-7267}, year = {2006}, abstract = {Interdisziplin{\"a}res Zentrum f{\"u}r Musterdynamik und Angewandte Fernerkundung Workshop vom 9. - 10. Februar 2006}, language = {en} } @article{HainzlScherbaumBeauval2006, author = {Hainzl, Sebastian and Scherbaum, Frank and Beauval, C{\´e}line}, title = {Estimating background activity based on interevent-time distribution}, issn = {0037-1106}, doi = {10.1785/0120050053}, year = {2006}, abstract = {The statistics of time delays between successive earthquakes has recently been claimed to be universal and to show the existence of clustering beyond the duration of aftershock bursts. We demonstrate that these claims are unjustified. Stochastic simulations with Poissonian background activity and triggered Omori-type aftershock sequences are shown to reproduce the interevent-time distributions observed on different spatial and magnitude scales in California. Thus the empirical distribution can be explained without any additional long-term clustering. Furthermore, we find that the shape of the interevent-time distribution, which can be approximated by the gamma distribution, is determined by the percentage of main-shocks in the catalog. This percentage can be calculated by the mean and variance of the interevent times and varies between 5\% and 90\% for different regions in California. Our investigation of stochastic simulations indicates that the interevent-time distribution provides a nonparametric reconstruction of the mainshock magnitude-frequency distribution that is superior to standard declustering algorithm}, language = {en} } @article{GianniotisKuehnScherbaum2014, author = {Gianniotis, Nikolaos and Kuehn, Nicolas and Scherbaum, Frank}, title = {Manifold aligned ground motion prediction equations for regional datasets}, series = {Computers \& geosciences : an international journal devoted to the publication of papers on all aspects of geocomputation and to the distribution of computer programs and test data sets ; an official journal of the International Association for Mathematical Geology}, volume = {69}, journal = {Computers \& geosciences : an international journal devoted to the publication of papers on all aspects of geocomputation and to the distribution of computer programs and test data sets ; an official journal of the International Association for Mathematical Geology}, publisher = {Elsevier}, address = {Oxford}, issn = {0098-3004}, doi = {10.1016/j.cageo.2014.04.014}, pages = {72 -- 77}, year = {2014}, abstract = {Inferring a ground-motion prediction equation (GMPE) for a region in which only a small number of seismic events has been observed is a challenging task. A response to this data scarcity is to utilise data from other regions in the hope that there exist common patterns in the generation of ground motion that can contribute to the development of a GMPE for the region in question. This is not an unreasonable course of action since we expect regional GMPEs to be related to each other. In this work we model this relatedness by assuming that the regional GMPEs occupy a common low-dimensional manifold in the space of all possible GMPEs. As a consequence, the GMPEs are fitted in a joint manner and not independent of each other, borrowing predictive strength from each other's regional datasets. Experimentation on a real dataset shows that the manifold assumption displays better predictive performance over fitting regional GMPEs independent of each other. (C) 2014 Elsevier Ltd. All rights reserved.}, language = {en} } @article{FalsaperlaWassermannScherbaum2002, author = {Falsaperla, Susanna and Wassermann, Joachim and Scherbaum, Frank}, title = {Solid earth - 29. Polarization analyses of broadband seismic data recorded on Stromboli Volcano (Italy) from 1996 to 1999 (DOI 10.1029-2001GLO14300)}, year = {2002}, language = {en} }