@article{CherstvyNagelBetaetal.2018, author = {Cherstvy, Andrey G. and Nagel, Oliver and Beta, Carsten and Metzler, Ralf}, title = {Non-Gaussianity, population heterogeneity, and transient superdiffusion in the spreading dynamics of amoeboid cells}, series = {Physical chemistry, chemical physics : a journal of European Chemical Societies}, volume = {20}, journal = {Physical chemistry, chemical physics : a journal of European Chemical Societies}, number = {35}, publisher = {Royal Society of Chemistry}, address = {Cambridge}, issn = {1463-9076}, doi = {10.1039/c8cp04254c}, pages = {23034 -- 23054}, year = {2018}, abstract = {What is the underlying diffusion process governing the spreading dynamics and search strategies employed by amoeboid cells? Based on the statistical analysis of experimental single-cell tracking data of the two-dimensional motion of the Dictyostelium discoideum amoeboid cells, we quantify their diffusive behaviour based on a number of standard and complementary statistical indicators. We compute the ensemble- and time-averaged mean-squared displacements (MSDs) of the diffusing amoebae cells and observe a pronounced spread of short-time diffusion coefficients and anomalous MSD-scaling exponents for individual cells. The distribution functions of the cell displacements, the long-tailed distribution of instantaneous speeds, and the velocity autocorrelations are also computed. In particular, we observe a systematic superdiffusive short-time behaviour for the ensemble- and time-averaged MSDs of the amoeboid cells. Also, a clear anti-correlation of scaling exponents and generalised diffusivity values for different cells is detected. Most significantly, we demonstrate that the distribution function of the cell displacements has a strongly non-Gaussian shape andusing a rescaled spatio-temporal variablethe cell-displacement data collapse onto a universal master curve. The current analysis of single-cell motions can be implemented for quantifying diffusive behaviours in other living-matter systems, in particular, when effects of active transport, non-Gaussian displacements, and heterogeneity of the population are involved in the dynamics.}, language = {en} }