@misc{Santer2018, author = {Santer, Svetlana}, title = {Light responsive soft nano-objects}, series = {Abstracts of papers : joint conference / The Chemical Institute of Cananda, CIC, American Chemical Society, ACS}, volume = {256}, journal = {Abstracts of papers : joint conference / The Chemical Institute of Cananda, CIC, American Chemical Society, ACS}, publisher = {American Chemical Society}, address = {Washington}, issn = {0065-7727}, pages = {1}, year = {2018}, language = {en} } @misc{JayNorellKunnusetal.2018, author = {Jay, Raphael J. and Norell, Jesper and Kunnus, Kristjan and Lundberg, Marcus and Gaffney, Kelly and Wernet, Philippe and Odelius, Michael and F{\"o}hlisch, Alexander}, title = {Dynamcis of local charge densities and metal-ligand covalency in iron complexes from femtosecond resonant inelastic soft X-ray scattering}, series = {Abstracts of Papers of the American Chemical Society}, volume = {256}, journal = {Abstracts of Papers of the American Chemical Society}, publisher = {American Chemical Society}, address = {Washington}, issn = {0065-7727}, url = {http://nbn-resolving.de/urn:nbn:se:uu:diva-370051}, pages = {2}, year = {2018}, language = {en} } @misc{MehrabiSchulzMuellerWerkmeisteretal.2018, author = {Mehrabi, Pedram and Schulz, Eike and M{\"u}ller-Werkmeister, Henrike and Persch, Elke and De Gasparo, Raoul and Diederich, Francois and Tellkamp, Friedjof and Pai, Emil F. and Miller, R. J. Dwayne}, title = {Time-resolved crystallography via an interlacing approach allows elucidation of milliseconds to seconds time delays}, series = {Acta Crystallographica Section A}, volume = {74}, journal = {Acta Crystallographica Section A}, publisher = {International Union of Crystallography}, address = {Chester}, issn = {2053-2733}, doi = {10.1107/S205327331809321X}, pages = {E138 -- E138}, year = {2018}, language = {en} } @misc{DaniTaeuberZhangetal.2018, author = {Dani, Alessandro and Taeuber, Karoline and Zhang, Weiyi and Schlaad, Helmut and Yuan, Jiayin}, title = {Stable covalently photo-cross-linked porous poly(ionic liquid) membrane with gradient pore size}, series = {Abstracts of papers : joint conference / The Chemical Institute of Cananda, CIC, American Chemical Society, ACS}, volume = {256}, journal = {Abstracts of papers : joint conference / The Chemical Institute of Cananda, CIC, American Chemical Society, ACS}, publisher = {American Chemical Society}, address = {Washington}, issn = {0065-7727}, pages = {1}, year = {2018}, abstract = {Porous polyelectrolyte membranes stable in a highly ionic environment are obtained by covalent crosslinking of an imidazolium-based poly(ionic liquid). The crosslinking reaction involves the UV light-induced thiol-ene (click) chemistry, and the phase separation, occurring during the crosslinking step, generates a fully interconnected porous structure in the membrane. The porosity is on the order of the micrometer scale and the membrane shows a gradient of pore size across the membrane cross-section. The membrane can separate polystyrene latex particles of different size and undergoes actuation in contact with acetone due to the asymmetric porous structure.}, language = {en} } @misc{BresselHerzogReich2019, author = {Bressel, Lena and Herzog, Bernd and Reich, Oliver}, title = {Monte-Carlo simulations of light transport in dense materials}, series = {Diffuse Optical Spectroscopy and Imaging}, volume = {11074}, journal = {Diffuse Optical Spectroscopy and Imaging}, publisher = {SPIE}, address = {Bellingham}, isbn = {978-1-5106-2841-0}, issn = {0277-786X}, doi = {10.1117/12.2527076}, pages = {3}, year = {2019}, abstract = {Monte-Carlo calculations are carried out to simulate the light transport in dense materials. Focus lies on the calculation of diffuse light transmission through films of scattering and absorbing media considering additionally the effect of dependent scattering. Different influences like interaction type between particles, particle size, composition etc. can be studied by this program. Simulations in this study show major influences on the diffuse transmission. Further simulations are carried out to model a sunscreen film and study best compositions of this film and will be presented.}, language = {en} } @misc{KleinpeterShainyan2019, author = {Kleinpeter, Erich and Shainyan, Bagrat A.}, title = {Very low-temperature dynamic Si-29 NMR study of the conformational equilibrium of (1,1-phenyl-1,1-silacyclohex-1-yl)disiloxane}, series = {Magnetic resonance in chemistry}, volume = {57}, journal = {Magnetic resonance in chemistry}, number = {6}, publisher = {Wiley}, address = {Hoboken}, issn = {0749-1581}, doi = {10.1002/mrc.4870}, pages = {317 -- 319}, year = {2019}, language = {en} } @misc{LutzKristenSkrabaniaetal.2006, author = {Lutz, Jean-Francois and Kristen, Juliane and Skrabania, Katja and Laschewsky, Andre}, title = {POLY 14-Synthetic strategies for preparing multicompartment micelles}, series = {Abstracts of papers / American Chemical Society}, volume = {232}, journal = {Abstracts of papers / American Chemical Society}, publisher = {American Chemical Society}, address = {Washington}, isbn = {0-8412-7426-6}, issn = {0065-7727}, pages = {1}, year = {2006}, abstract = {The fabrication of compartmented micellar systems is an exciting new area of research in the field of polymer self-assembly. Multicompartment micelles composed of a water-soluble shell and a segregated hydrophobic core can be obtained via direct aqueous self-assembly of preformed polymeric amphiphiles possessing one hydrophilic segment and two incompatible hydrophobic segments (e.g. hydrocarbon and fluorocarbon blocks). Such macromolecular building-blocks were prepared in the present work principally via reversible addition-fragmentation transfer polymerization (RAFT). Polysoaps or triblock macrosurfactants can be synthesized in high yields by RAFT under relatively straightforward experimental conditions.}, language = {en} } @misc{IhmelsLinkerTrofimov2017, author = {Ihmels, Heiko and Linker, Torsten and Trofimov, Aleksei}, title = {Editorial}, series = {Journal of physical organic chemistry}, volume = {30}, journal = {Journal of physical organic chemistry}, publisher = {Wiley}, address = {Hoboken}, issn = {0894-3230}, doi = {10.1002/poc.3745}, pages = {1}, year = {2017}, language = {en} } @misc{MondalHoldt2016, author = {Mondal, Suvendu Sekhar and Holdt, Hans-J{\"u}rgen}, title = {Breaking Down Chemical Weapons by Metal-Organic Frameworks}, series = {Angewandte Chemie : a journal of the Gesellschaft Deutscher Chemiker ; International edition}, volume = {55}, journal = {Angewandte Chemie : a journal of the Gesellschaft Deutscher Chemiker ; International edition}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {1433-7851}, doi = {10.1002/anie.201508407}, pages = {42 -- 44}, year = {2016}, abstract = {Seek and destroy: Filtration schemes and self-detoxifying protective fabrics based on the ZrIV-containing metal—organic frameworks (MOFs) MOF-808 and UiO-66 doped with LiOtBu have been developed that capture and hydrolytically detoxify simulants of nerve agents and mustard gas. Both MOFs function as highly catalytic elements in these applications.}, language = {en} } @misc{WischkeLendlein2016, author = {Wischke, Christian and Lendlein, Andreas}, title = {Functional nanocarriers by miniaturization of polymeric materials}, series = {Nanomedicine}, volume = {11}, journal = {Nanomedicine}, publisher = {Future Medicine}, address = {London}, issn = {1743-5889}, doi = {10.2217/nnm.16.45}, pages = {1507 -- 1509}, year = {2016}, language = {en} } @misc{LorenzSaalfrank2015, author = {Lorenz, Ulf and Saalfrank, Peter}, title = {Comparing thermal wave function methods for multi-configuration time-dependent Hartree simulations (vol 140, 044106, 2014)}, series = {The journal of chemical physics : bridges a gap between journals of physics and journals of chemistr}, volume = {143}, journal = {The journal of chemical physics : bridges a gap between journals of physics and journals of chemistr}, number = {22}, publisher = {American Institute of Physics}, address = {Melville}, issn = {0021-9606}, doi = {10.1063/1.4938051}, pages = {1}, year = {2015}, language = {en} } @misc{Boese2014, author = {Boese, Adrian Daniel}, title = {Assessment of coupled cluster theory and more approximate methods for Hydrogen Bonded Systems (vol 9, pg 4403, 2013)}, series = {Journal of chemical theory and computation}, volume = {10}, journal = {Journal of chemical theory and computation}, number = {2}, publisher = {American Chemical Society}, address = {Washington}, issn = {1549-9618}, doi = {10.1021/ct500041j}, pages = {893 -- 893}, year = {2014}, language = {en} } @misc{TrollKulkarniWangetal.2011, author = {Troll, K. and Kulkarni, Amit and Wang, W. and Darko, C. and Koumba, A. M. Bivigou and Laschewsky, Andr{\´e} and M{\"u}ller-Buschbaum, Peter and Papadakis, Christine M.}, title = {The collapse transition of poly(styrene-b-(N-isopropyl acrylamide)) diblock copolymers in aqueous solution and in thin films}, series = {Colloid and polymer science : official journal of the Kolloid-Gesellschaft}, volume = {289}, journal = {Colloid and polymer science : official journal of the Kolloid-Gesellschaft}, number = {2}, publisher = {Springer}, address = {New York}, issn = {0303-402X}, doi = {10.1007/s00396-010-2344-1}, pages = {227 -- 227}, year = {2011}, language = {en} } @misc{KramerKleinpeter2011, author = {Kramer, Markus and Kleinpeter, Erich}, title = {A conformational study of N-acetyl glucosamine derivatives utilizing residual dipolar couplings (vol 212, pg 174, 2011)}, series = {Journal of magnetic resonance}, volume = {213}, journal = {Journal of magnetic resonance}, number = {1}, publisher = {Elsevier}, address = {San Diego}, issn = {1090-7807}, doi = {10.1016/j.jmr.2011.09.017}, pages = {210 -- 211}, year = {2011}, language = {en} } @misc{PihlajaKleinpeter2012, author = {Pihlaja, Kalevi and Kleinpeter, Erich}, title = {Professor Ferenc Fulop a tribute}, series = {Arkivoc : free online journal of organic chemistry}, journal = {Arkivoc : free online journal of organic chemistry}, publisher = {ARKAT}, address = {Gainesville}, issn = {1551-7004}, pages = {1 -- 5}, year = {2012}, language = {en} } @misc{BleekTaubert2013, author = {Bleek, Katrin and Taubert, Andreas}, title = {New developments in polymer-controlled, bio-inspired calcium phosphate mineralization from aqueous solution}, series = {Acta biomaterialia}, volume = {9}, journal = {Acta biomaterialia}, number = {9}, publisher = {Elsevier}, address = {Oxford}, issn = {1742-7061}, doi = {10.1016/j.actbio.2013.05.007}, pages = {8466 -- 8466}, year = {2013}, language = {en} } @misc{Floss2014, author = {Floss, Gereon}, title = {Theoretische Untersuchungen zur lichtinduzierten Isomerisierung von gekoppelten Azobenzolderivaten}, address = {Potsdam}, pages = {130 S.}, year = {2014}, language = {de} } @misc{Krehl2012, author = {Krehl, Stefan}, title = {Entwicklung von Ruthenium-katalysierten Tandem-Reaktionssequenzen}, address = {Potsdam}, pages = {280 S.}, year = {2012}, language = {de} } @misc{Fuechsel2011, author = {F{\"u}chsel, Gernot}, title = {Elektronengetriebene Reaktionen auf Oberfl{\"a}chen : die Dynamik der femtosekundenlaserinduzierten Desorption von H2/D2 von Ru(001)}, address = {Potsdam}, pages = {162 S.}, year = {2011}, language = {de} } @misc{KoetzReicheltKosmellaetal.2005, author = {Koetz, Joachim and Reichelt, S. and Kosmella, Sabine and Tiersch, Brigitte}, title = {Recovery of nanoparticles produced in phosphatidylcholine-based template phases}, issn = {0021-9797}, year = {2005}, abstract = {This paper focuses on the characterization and use of polymer-modified phosphatidylcholine (PC)/sodium dodecyl sulfate (SDS)-based inverse microemulsions as a template phase for BaSO4 nanoparticle formation. The area of the optically clear inverse microemulsion phase in the isooctane/hexanol/water/PC/SDS system is not significantly changed by adding polyelectrolytes, i.e., poly(diallyldimethylammonium chloride) (PDADMAC), or amphoteric copolymers of diallyldimethylammonium chloride and maleamid acid to the SDS-modified inverse microemulsion. Shear experiments show non- Newtonian flow behavior and oscillation experiments show a frequency-dependent viscosity increase (dilatant behavior) of the microemulsions. Small amounts of bulk water were identified by means of differential scanning calorimetry. One can conclude that the macromolecules are incorporated into the individual droplets, and polymer-filled microemulsions are formed. The polymer-filled microemulsions were used as a template phase for the synthesis of BaSO4 nanoparticles. After solvent evaporation the nanoparticles were redispersed in water and isooctane, respectively. The polymers incorporated into the microemulsion are involved in the redispersion process and influence the size and shape of the redispersed BaSO4 particles in a specific way. The crystallization process mainly depends on the type of solvent and the polymer component added. In the presence of the cationic polyelectrolyte PDADMAC the crystallization to larger cubic crystals is inhibited, and layers consisting of polymer-stabilized spherical nanoparticles of BaSO4 (6 nm in size) will be observed. (c) 2004 Elsevier Inc. All rights reserved}, language = {en} }