@misc{BourgatTierschKoetzetal.2020, author = {Bourgat, Yannick and Tiersch, Brigitte and Koetz, Joachim and Menzel, Henning}, title = {Enzyme degradable polymersomes from chitosan-g-[poly-l-lysine-block-epsilon-caprolactone] copolymer}, series = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {1}, issn = {1866-8372}, doi = {10.25932/publishup-56658}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-566584}, pages = {11}, year = {2020}, abstract = {The scope of this study includes the synthesis of chitosan-g-[peptide-poly-epsilon-caprolactone] and its self-assembly into polymeric vesicles employing the solvent shift method. In this way, well-defined core-shell structures suitable for encapsulation of drugs are generated. The hydrophobic polycaprolactone side-chain and the hydrophilic chitosan backbone are linked via an enzyme-cleavable peptide. The synthetic route involves the functionalization of chitosan with maleimide groups and the preparation of polycaprolactone with alkyne end-groups. A peptide functionalized with a thiol group on one side and an azide group on the other side is prepared. Thiol-ene click-chemistry and azide-alkyne Huisgen cycloaddition are then used to link the chitosan and poly-epsilon-caprolactone chains, respectively, with this peptide. For a preliminary study, poly-l-lysin is a readily available and cleavable peptide that is introduced to investigate the feasibility of the system. The size and shape of the polymersomes are studied by dynamic light scattering and cryo-scanning electron microscopy. Furthermore, degradability is studied by incubating the polymersomes with two enzymes, trypsin and chitosanase. A dispersion of polymersomes is used to coat titanium plates and to further test the stability against enzymatic degradation.}, language = {en} } @article{BourgatTierschKoetzetal.2020, author = {Bourgat, Yannick and Tiersch, Brigitte and Koetz, Joachim and Menzel, Henning}, title = {Enzyme degradable polymersomes from chitosan-g-[poly-l-lysine-block-epsilon-caprolactone] copolymer}, series = {Macromolecular bioscience}, volume = {21}, journal = {Macromolecular bioscience}, number = {1}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {1616-5187}, doi = {10.1002/mabi.202000259}, pages = {1 -- 9}, year = {2020}, abstract = {The scope of this study includes the synthesis of chitosan-g-[peptide-poly-epsilon-caprolactone] and its self-assembly into polymeric vesicles employing the solvent shift method. In this way, well-defined core-shell structures suitable for encapsulation of drugs are generated. The hydrophobic polycaprolactone side-chain and the hydrophilic chitosan backbone are linked via an enzyme-cleavable peptide. The synthetic route involves the functionalization of chitosan with maleimide groups and the preparation of polycaprolactone with alkyne end-groups. A peptide functionalized with a thiol group on one side and an azide group on the other side is prepared. Thiol-ene click-chemistry and azide-alkyne Huisgen cycloaddition are then used to link the chitosan and poly-epsilon-caprolactone chains, respectively, with this peptide. For a preliminary study, poly-l-lysin is a readily available and cleavable peptide that is introduced to investigate the feasibility of the system. The size and shape of the polymersomes are studied by dynamic light scattering and cryo-scanning electron microscopy. Furthermore, degradability is studied by incubating the polymersomes with two enzymes, trypsin and chitosanase. A dispersion of polymersomes is used to coat titanium plates and to further test the stability against enzymatic degradation.}, language = {en} }