@phdthesis{Melchert2012, author = {Melchert, Christian}, title = {Entwicklung multi-stimuli sensitiver Materialien auf der Basis von fl{\"u}ssigkristallinen Elastomeren}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-62866}, school = {Universit{\"a}t Potsdam}, year = {2012}, abstract = {Aufgrund der zunehmenden technischen Anspr{\"u}che der Gesellschaft sind sich aktiv bewegende Polymere in den Mittelpunkt aktueller Forschung ger{\"u}ckt. Diese spielen bei Anwen-dungen im Bereich von k{\"u}nstlichen Muskeln und Implantaten f{\"u}r die minimal invasive Chirurgie eine wichtige Rolle. Vor allem Form{\"a}nderungs- und Formged{\"a}chtnispolymere stehen dabei im wissenschaftlichen Fokus. W{\"a}hrend die kontaktlose Deformation einer permanenten Form in eine tempor{\"a}re metastabile Form, charakteristisch f{\"u}r Form{\"a}nde-rungspolymere ist, kann bei Formged{\"a}chtnis-Materialien die tempor{\"a}re Form, aufgrund der Ausbildung reversibler, tempor{\"a}rer Netzpunkte, fixiert werden. Ein Polymermaterial, das eine Kombination beider Funktionen aufweist w{\"u}rde zu einem Material f{\"u}hren welches kontaktlos in eine tempor{\"a}re Form deformiert und in dieser fixiert werden kann. Zus{\"a}tzlich w{\"u}rde aufgrund der kontaktlosen Deformation die Reversibilit{\"a}t dieser Funktion gew{\"a}hr-leistet sein. Ein solches Material ist bislang noch nicht beschrieben worden. In dieser Arbeit wird untersucht, ob durch die Kopplung zweier separat schaltbarer, be-kannter Funktionen eine neue schaltbare Funktion erzielt werden kann. Daher wurden multi-stimuli sensitive Materialien entwickelt die eine Kopplung des Form{\"a}nderungs- und des Formged{\"a}chtniseffektes aufweisen. Dazu wurden zwei Konzepte entwickelt, die sich hinsichtlich der Reihenfolge der verwendeten Stimuli unterscheiden. Im ersten Konzept wurden fl{\"u}ssigkristalline Elastomere basie-rend auf Azobenzenderivaten aufgebaut und hinsichtlich der Kombination des licht-induzierten Form{\"a}nderungseffektes mit dem thermisch-induzierten Formged{\"a}chtniseffekt untersucht. Diese orientierten Netzwerke weisen oberhalb der Glas{\"u}bergangstemperatur (Tg) eine kontaktlose Verformung (Biegung) durch Bestrahlung mit UV-Licht des geeigneten Wellenl{\"a}ngenbereichs auf, wodurch eine tempor{\"a}re Form erhalten wurde. Hierbei spielt der Vernetzungsgrad eine entscheidende Rolle bez{\"u}glich der Auspr{\"a}gung dieser Biegung. Eine fixierte, tempor{\"a}re Form konnte durch gleichzeitiges Abk{\"u}hlen des Materials unterhalb von Tg w{\"a}hrend der Bestrahlung mit UV-Licht erhalten werden. Nach erneutem Aufheizen {\"u}ber Tg konnte die Originalform wiederhergestellt werden. Dieser Vorgang konnte reversibel durchgef{\"u}hrt werden. Damit wurde gezeigt, dass eine neue schaltbare Funktion erzielt wurde, die auf der Kopplung des lichtinduzierten Form{\"a}nderungs- mit dem thermisch-induzierten Formged{\"a}chtniseffekt basiert. Die Abstimmung der einzelnen Funktion wird in diesem Konzept {\"u}ber die Morphologie des Systems gew{\"a}hrleistet. Diese neue Funktion erm{\"o}glicht eine kontaktlose Deformation des Materials in eine tempor{\"a}re Form, welche fixiert werden kann. Im zweiten Konzept wurde eine Kopplung des thermisch induzierten Form{\"a}nderungs- mit dem licht-induzierten Formged{\"a}chtniseffekt angestrebt. Um dies zu realisieren wurden nematisch, fl{\"u}ssigkristalline Hauptkettenelastomere (NMC-LCE) entwickelt, die eine nied-rige {\"U}bergangstemperatur der nematischen in die isotrope Phase (TNI), als auch einen aus-gepr{\"a}gten thermisch induzierten Form{\"a}nderungseffekt aufweisen. Zus{\"a}tzlich wurde eine photosensitive Schicht aufgebaut, die Cinnamylidenessigs{\"a}uregruppen in der Seitenkette eines Polysiloxanr{\"u}ckgrates aufweist. Die Reversibilit{\"a}t der photoinduzierten [2+2]-Cycloaddition konnte f{\"u}r dieses photosensitive Polymer beobachtet werden, wodurch die-ses Polymersystem in der Lage ist reversible tempor{\"a}re Netzpunkte, aufgrund der Bestrah-lung mit UV-Licht, auszubilden. Die kovalente Anbindung der photosensitiven Schicht an die Oberfl{\"a}che des fl{\"u}ssigkristallinen Kerns wurde erfolgreich durchgef{\"u}hrt, wodurch ein Multi-Komponenten-System aufgebaut wurde. Die Kombination des thermisch-induzierten Form{\"a}nderungs- mit dem licht-induzierten Formged{\"a}chtniseffektes wurde anhand dieses Systems untersucht. W{\"a}hrend die Einzelkomponenten die erforderliche Funktion zeigten, ist hier noch Arbeit in der Abstimmung beider Strukturen zu leisten. Insbesondere die Variation der Schichtdicken beider Komponenten steht im Fokus zuk{\"u}nftiger Arbeiten. In dieser Arbeit wurde durch die Kopplung von zwei separat schaltbaren, bekannten Funktionen eine neue schaltbare Funktion erzielt. Dies setzt voraus, dass die Einzelkomponenten hinsichtlich einer Funktion schaltbar sind und in einem Material integriert werden k{\"o}nnen. Des Weiteren m{\"u}ssen die beiden Funktionen mit unterschiedlichen Stimuli geschaltet werden. Ein wichtiger Schritt bei der Kopplung der Funktionen, ist die Abstimmung der beiden Komponenten. Dies kann {\"u}ber die Variation der Morphologie oder der Struktur erzielt werden. Anhand der Vielzahl der vorhandenen stimuli-sensitiven Materialien sind verschiedene Kopplungsm{\"o}glichkeiten vorhanden. Demnach wird erwartet, dass auf diesem Gebiet weitere neue Funktionen erzielt werden k{\"o}nnen.}, language = {de} } @article{JulichGrunerLoewenbergNeffeetal.2013, author = {Julich-Gruner, Konstanze K. and L{\"o}wenberg, Candy and Neffe, Axel T. and Behl, Marc and Lendlein, Andreas}, title = {Recent trends in the chemistry of shape-memory polymers}, series = {Macromolecular chemistry and physics}, volume = {214}, journal = {Macromolecular chemistry and physics}, number = {5}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {1022-1352}, doi = {10.1002/macp.201200607}, pages = {527 -- 536}, year = {2013}, abstract = {Shape-memory polymers (SMPs) are stimuli-sensitive materials capable of performing complex movements on demand, which makes them interesting candidates for various applications, for example, in biomedicine or aerospace. This trend article highlights current approaches in the chemistry of SMPs, such as tailored segment chemistry to integrate additional functions and novel synthetic routes toward permanent and temporary netpoints. Multiphase polymer networks and multimaterial systems illustrate that SMPs can be constructed as a modular system of different building blocks and netpoints. Future developments are aiming at multifunctional and multistimuli-sensitive SMPs.}, language = {en} } @article{LiuGouldRudolphetal.2020, author = {Liu, Yue and Gould, Oliver E. C. and Rudolph, Tobias and Fang, Liang and Kratz, Karl and Lendlein, Andreas}, title = {Polymeric microcuboids programmable for temperature-memory}, series = {Macromolecular materials and engineering}, volume = {305}, journal = {Macromolecular materials and engineering}, number = {10}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {1438-7492}, doi = {10.1002/mame.202000333}, pages = {7}, year = {2020}, abstract = {Microobjects with programmable mechanical functionality are highly desirable for the creation of flexible electronics, sensors, and microfluidic systems, where fabrication/programming and quantification methods are required to fully control and implement dynamic physical behavior. Here, programmable microcuboids with defined geometries are prepared by a template-based method from crosslinked poly[ethylene-co-(vinyl acetate)] elastomers. These microobjects could be programmed to exhibit a temperature-memory effect or a shape-memory polymer actuation capability. Switching temperaturesT(sw)during shape recovery of 55 +/- 2, 68 +/- 2, 80 +/- 2, and 86 +/- 2 degrees C are achieved by tuning programming temperatures to 55, 70, 85, and 100 degrees C, respectively. Actuation is achieved with a reversible strain of 2.9 +/- 0.2\% to 6.7 +/- 0.1\%, whereby greater compression ratios and higher separation temperatures induce a more pronounced actuation. Micro-geometry change is quantified using optical microscopy and atomic force microscopy. The realization and quantification of microparticles, capable of a tunable temperature responsive shape-change or reversible actuation, represent a key development in the creation of soft microscale devices for drug delivery or microrobotics.}, language = {en} }