@article{GuRisseLuetal.2019, author = {Gu, Sasa and Risse, Sebastian and Lu, Yan and Ballauff, Matthias}, title = {Mechanism of the oxidation of 3,3′,5,5′-tetramethylbenzidine catalyzed by peroxidase-like Pt nanoparticles immobilized in spherical polyelectrolyte brushes}, series = {ChemPhysChem}, volume = {21}, journal = {ChemPhysChem}, number = {5}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {1439-4235}, doi = {10.1002/cphc.201901087}, pages = {450 -- 458}, year = {2019}, abstract = {Experimental and kinetic modelling studies are presented to investigate the mechanism of 3,3 ',5,5 '-tetramethylbenzidine (TMB) oxidation by hydrogen peroxide (H2O2) catalyzed by peroxidase-like Pt nanoparticles immobilized in spherical polyelectrolyte brushes (SPB-Pt). Due to the high stability of SPB-Pt colloidal, this reaction can be monitored precisely in situ by UV/VIS spectroscopy. The time-dependent concentration of the blue-colored oxidation product of TMB expressed by different kinetic models was used to simulate the experimental data by a genetic fitting algorithm. After falsifying the models with abundant experimental data, it is found that both H2O2 and TMB adsorb on the surface of Pt nanoparticles to react, indicating that the reaction follows the Langmuir-Hinshelwood mechanism. A true rate constant k, characterizing the rate-determining step of the reaction and which is independent on the amount of catalysts used, is obtained for the first time. Furthermore, it is found that the product adsorbes strongly on the surface of nanoparticles, thus inhibiting the reaction. The entire analysis provides a new perspective to study the catalytic mechanism and evaluate the catalytic activity of the peroxidase-like nanoparticles.}, language = {en} } @article{BauchKrtitschkaLinker2017, author = {Bauch, Marcel and Krtitschka, Angela and Linker, Torsten}, title = {Photooxygenation of oxygen-substituted naphthalenes}, series = {Journal of physical organic chemistry}, volume = {30}, journal = {Journal of physical organic chemistry}, publisher = {Wiley}, address = {Hoboken}, issn = {0894-3230}, doi = {10.1002/poc.3734}, pages = {6803 -- 6813}, year = {2017}, abstract = {The reaction of oxygen-substituted naphthalenes with singlet oxygen (O-1(2)) has been investigated, and labile endoperoxides have been isolated and characterized at -78 degrees C for the first time. Low-temperature kinetics by UV spectroscopy revealed that alkoxy and silyloxy substituents remarkably increase the rate of photooxygenations compared to 1,4-dimethylnaphthalene, whereas acyloxy-substituted acenes are inert towards O-1(2). The reactivities nicely correlate with HOMO energies and free activation energies, which we determined by density functional theory calculations. The lability of the isolated endoperoxides is due to their very fast back reaction to the corresponding naphthalenes even at -20 degrees C under release of O-1(2), making them to superior sources of this reactive species under very mild conditions. Finally, a carbohydrate-substituted naphthalene has been synthesized, which reacts reversibly with O-1(2) and might be applied for enantioselective oxidations in future work.}, language = {en} } @phdthesis{Vacogne2016, author = {Vacogne, Charlotte D.}, title = {New synthetic routes towards well-defined polypeptides, morphologies and hydrogels}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-396366}, school = {Universit{\"a}t Potsdam}, pages = {xii, 175}, year = {2016}, abstract = {Proteins are natural polypeptides produced by cells; they can be found in both animals and plants, and possess a variety of functions. One of these functions is to provide structural support to the surrounding cells and tissues. For example, collagen (which is found in skin, cartilage, tendons and bones) and keratin (which is found in hair and nails) are structural proteins. When a tissue is damaged, however, the supporting matrix formed by structural proteins cannot always spontaneously regenerate. Tailor-made synthetic polypeptides can be used to help heal and restore tissue formation. Synthetic polypeptides are typically synthesized by the so-called ring opening polymerization (ROP) of α-amino acid N-carboxyanhydrides (NCA). Such synthetic polypeptides are generally non-sequence-controlled and thus less complex than proteins. As such, synthetic polypeptides are rarely as efficient as proteins in their ability to self-assemble and form hierarchical or structural supramolecular assemblies in water, and thus, often require rational designing. In this doctoral work, two types of amino acids, γ-benzyl-L/D-glutamate (BLG / BDG) and allylglycine (AG), were selected to synthesize a series of (co)polypeptides of different compositions and molar masses. A new and versatile synthetic route to prepare polypeptides was developed, and its mechanism and kinetics were investigated. The polypeptide properties were thoroughly studied and new materials were developed from them. In particular, these polypeptides were able to aggregate (or self-assemble) in solution into microscopic fibres, very similar to those formed by collagen. By doing so, they formed robust physical networks and organogels which could be processed into high water-content, pH-responsive hydrogels. Particles with highly regular and chiral spiral morphologies were also obtained by emulsifying these polypeptides. Such polypeptides and the materials derived from them are, therefore, promising candidates for biomedical applications.}, language = {en} }