@phdthesis{Kozempel2005, author = {Kozempel, Steffen}, title = {Emulgatorfreie Emulsionspolymerisation : Monomerl{\"o}sungszustand und Teilchenbildung}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-6106}, school = {Universit{\"a}t Potsdam}, year = {2005}, abstract = {Polymere sind zweifelsohne der Werkstoff in unserer Zeit. Ein bedeutender Anteil der heute industriell produzierten Polymere wird durch Emulsionspolymerisation hergestellt. Obwohl die Emulsionspolymerisation breite Anwendung findet, sind die involvierten Mechanismen von Teilchenbildung und -wachstum noch heute Gegenstand heftiger Kontroversen. Ein Spezialfall der Emulsionspolymerisation ist die emulgatorfreie Emulsionspolymerisation. Hierbei handelt es sich um ein scheinbar einfacheres System der Emulsionspolymerisation, weil diese Methode ohne Zusatz von Emulgatoren auskommt. Die Teilchenbildung ist ein fundamentaler Vorgang im Verlauf der Emulsionspolymerisation, da sie zur Ausbildung der polymeren Latexphase f{\"u}hrt. Detaillierte Kenntnisse zum Mechanismus der Nukleierung erm{\"o}glichen eine bessere Kontrolle des Reaktionsverlaufes und damit der Eigenschaften des Endproduktes der Emulsionspolymerisation, dem Polymer-Latex. Wie bereits vorangegangene Arbeiten auf dem Gebiet der emulgatorfreien Emulsionspolymerisation von Styrol sowie Methylmethacrylat und Vinylacetat zeigen konnten, verl{\"a}uft die Teilchenbildung in diesen Systemen {\"u}ber den Mechanismus der aggregativen Nukleierung. Im Zusammenhang mit den Ergebnissen der genannten Arbeiten tauchte dabei immer wieder ein interessanter Effekt im Bereich der Partikelnukleierung auf. Dieses als JUMBO-Effekt bezeichnete Ph{\"a}nomen zeigte sich reproduzierbar in einem Anstieg der Transmission im Bereich der Teilchenbildung von emulgatorfreien Emulsionspolymerisationen von Styrol, MMA und VAc. Nach der Initiierung der Polymerisation in einer w{\"a}ssrigen Monomerl{\"o}sung durch Kaliumperoxodisulfat steigt die Durchl{\"a}ssigkeit bei 546 nm auf {\"u}ber 100 \% an. F{\"u}r diese „Abnahme der optischen Dichte" wurden verschiedene Erkl{\"a}rungsm{\"o}glichkeiten vorgeschlagen, jedoch blieb ein Nachweis der Ursache f{\"u}r den JUMBO-Effekt bisher aus. Dieser Mangel an Aufkl{\"a}rung eines offenbar grundlegenden Ph{\"a}nomens in der emulgatorfreien Emulsionspolymerisation bildet den „Nukleus" f{\"u}r die vorlie¬gende Arbeit. Durch die vorliegende Dissertation konnte das Verst{\"a}ndnis f{\"u}r Ph{\"a}nomene der Teilchenbildung in der emulgatorfreien Emulsionspolymerisation von Styrol mit KPS erweitert werden. In diesem Rahmen wurde das Online-Monitoring des Polymerisationsvorganges verbessert und um verschiedene Methoden erweitert: Zur simultanen Erfassung von Tr{\"u}bungsdaten bei verschiedenen Wellenl{\"a}ngen konnte ein modernes Spektrometer in Kombination mit einer Lichtleitersonde in die Reaktionsapparatur integriert werden. Es wurde ein verbesserter Algorithmus zur Datenbearbeitung f{\"u}r die Partikelgr{\"o}ßenbestimmung mittels faseroptischer dynamischer Lichtstreuung entwickelt. Es wurden Online-Partikelgr{\"o}ßenanalysen mittels statischer Vielwinkellichtstreuung bei Polymerisationen direkt in entsprechenden Lichtstreuk{\"u}vetten durchgef{\"u}hrt. Diese zur Beschreibung des untersuchten Systems eingef{\"u}hrten Methoden sowie ein zeitlich vollst{\"a}ndiges Monitoring des gesamten Polymerisationsverlaufes, beginnend mit der Zugabe von Monomer zu Wasser, f{\"u}hrten zu neuen Erkenntnissen zur emulgatorfreien Emulsionspolymerisation. Es wurden große Monomeraggregate, die sog. Nanotr{\"o}pfchen, in w{\"a}ssriger L{\"o}sung (emulgatorfrei) nachgewiesen. Diese Aggregate bilden sich spontan und treten verst{\"a}rkt in entgastem Wasser auf. Die Existenz von Nanotr{\"o}pfchen in Verbindung mit Tr{\"u}bungs- und gaschromatografischen Messungen l{\"a}sst auf eine molekular gel{\"o}ste „Wirkkonzentration" von Styrol in Wasser schließen, die bedeutend geringer ist als die absolute S{\"a}ttigungskonzentration. Es konnten Hinweise auf eine Reaktion h{\"o}herer Ordnung im System Wasser/Styrol/KPS gefunden werden. Es konnte gezeigt werden, dass eine pr{\"a}zise Einstellung der Nukleierungsdauer {\"u}ber die Zeit der Equilibrierung von Wasser mit Styrol m{\"o}glich ist. Der JUMBO-Effekt, dem in dieser Arbeit ein besonderes Interesse galt, konnte in gewisser Weise entmystifiziert werden. Es konnte gezeigt werden, dass die Durchl{\"a}ssigkeit der Reaktionsmischung bereits beim L{\"o}sen von Styrol in Wasser durch Bildung von Styrolaggregaten abnimmt. Der darauf folgende kurzzeitige Transmissionsanstieg im Zusammenhang mit der Nukleierung erreicht dabei nicht mehr 100 \% des Referenzwertes von reinem Wasser. Alle experimentellen Daten sprechen f{\"u}r die Nanotr{\"o}pfchen als Ursache des JUMBO-Effekts. Wie die Ergebnisse dieser Arbeit zeigen, ist selbst das relativ „einfache" System der emulgatorfreien Emulsionspolymerisation komplizierter als angenommen. Die Existenz von großen Styrolaggregaten in w{\"a}ssriger L{\"o}sung erfordert eine neue Betrachtungsweise des Reaktionssystems, in die auch der L{\"o}sungszustand des Monomers mit einbezogen werden muss.}, subject = {Emulsionspolymerisation}, language = {de} } @phdthesis{Nazaran2008, author = {Nazaran, Pantea}, title = {Nucleation in emulsion polymerization : steps towards a non-micellar nucleation theory}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-17521}, school = {Universit{\"a}t Potsdam}, year = {2008}, abstract = {For more than 70 years, understanding of the mechanism of particle nucleation in emulsion polymerization has been one of the most challenging issues in heterophase polymerization research. Within this work a comprehensive experimental study of particle nucleation in emulsion polymerization of styrene at 70 °C and variety of conditions has been performed. To follow the onset of nucleation, on-line conductivity measurements were applied. This technique is highly sensitive to the mobility of conducting species and hence, it can be employed to follow aggregation processes leading to particle formation. On the other hand, by recording the optical transmission (turbidity) of the reaction mixture particle growth was followed. Complementary to the on-line investigations, off-line characterizations of the particle morphology and the molecular weight have been performed. The aim was to achieve a better insight in the processes taking place after starting the reaction via particle nucleation until formation of colloidally stable latex particles. With this experimental protocol the initial period of styrene emulsion polymerization in the absence as well as in the presence of various surfactants (concentrations above and below the critical micellization concentration) and also in the presence of seed particles has been investigated. Ionic and non-ionic initiators (hydrophilic and hydrophobic types) have been applied to start the polymerizations. Following the above algorithm, experimental evidence has been obtained showing the possibility of performing surfactant-free emulsion polymerization of styrene with oil-soluble initiators. The duration of the pre-nucleation period (that is the time between starting the polymerization and nucleation) can be precisely adjusted with the initiator hydrophobicity, the equilibration time of styrene in water, and the surfactant concentration. Spontaneous emulsification of monomer in water, as soon as both phases are brought into contact, is a key factor to explain the experimental results. The equilibration time of monomer in water as well as the type and concentration of other materials in water (surfactants, seed particles, etc.) control the formation rate and the size of the emulsified droplets and thus, have a strong influence on the particle nucleation and the particle morphology. One of the main tasks was to investigate the effect of surfactant molecules and especially micelles on the nucleation mechanism. Experimental results revealed that in the presence of emulsifier micelles the conductivity pattern does not change essentially. This means that the presence of emulsifiers does not change the mechanism of particle formation qualitatively. However, surfactants assist in the nucleation process as they lower the activation free energy of particle formation. Contrary, seed particles influence particle nucleation, substantially. In the presence of seed particles above a critical volume fraction the formation of new particles can be suppressed. However, micelles and seed particles as absorbers exhibit a common behavior under conditions where monomer equilibration is not allowed. Results prove that the nucleation mechanism comprises the initiation of water soluble oligomers in the aqueous phase followed by their aggregation. The process is heterogeneous in nature due to the presence of monomer droplets.}, language = {en} }