@phdthesis{Schumacher2011, author = {Schumacher, Soeren}, title = {Saccharide recognition : boronic acids as receptors in polymeric networks}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-52869}, school = {Universit{\"a}t Potsdam}, year = {2011}, abstract = {In this thesis entitled "Saccharide Recognition - Boronic acids as Receptors in Polymeric Networks" different aspects of boronic acid synthesis, their analysis and incorporation or attachment to different polymeric networks and characterisation thereof were investigated. The following key aspects were considered: • Provision of a variety of different characterised arylboronic acids and benzoboroxoles • Attachment of certain derivatives to nanoparticles and the characterisation of saccharide binding by means of isothermal titration calorimetry and displacement assay (ARS) to enhance the association constant to saccharides at pH 7.4 • Enhancement of selectivity in polymeric systems by means of molecular imprinting using fructose as template and a polymerisable benzoboroxole as functional monomer for the recognition at pH 7.4 (Joined by a diploma thesis of F. Gr{\"u}neberger) • Development of biomimetic saccharide structures and the development of saccharide (especially glucose and fructose) binding MIPs by using these structures as template molecules. In the first part of the thesis different arylboronic acid derivatives were synthesised and their binding to glucose or fructose was investigated by means of isothermal titration calorimetry (ITC). It could be derived, which is in parallel to the literature, that derivatives bearing a methylhydroxyl-group in ortho-position to the boron (benzoboroxole) exhibit in most cases a two-fold higher association constant compared to the corresponding phenylboronic acid derivative. To gain a deeper understanding NMR spectroscopy and mass spectrometry with the benzoboroxole and glucose or fructose was performed. It could be shown that the exchange rate in terms of NMR time scale is quite slow since in titration experiments new peaks appeared. Via mass spectrometry of a mixture between benzoboroxole and glucose or fructose, different binding stoichiometries could be detected showing that the binding of saccharides is comparable with their binding to phenylboronic acid. In addition, the use of Alizarin Red S as an electrochemical reporter was described for the first time to monitor the saccharide binding to arylboronic acids not only with spectroscopy. Here, the redox behaviour and the displacement were recorded by cyclic voltammograms. In the second part different applications of boronic acids in polymeric networks were investigated. The attachment of benzoboroxoles to nanoparticles was investigated and monitored by means of isothermal titration calorimetry and a colourimetric assay with Alizarin Red S as the report dye. The investigations by isothermal titration calorimetry compared the fructose binding of arylboronic acids and benzoboroxoles coupled to these nanoparticles and "free" in solution. It could be shown that the attached derivatives showed a higher binding constant due to an increasing entropy term. This states for possible multivalent binding combined with a higher water release. Since ITC could not characterise the binding of glucose to these nanoparticles due to experimental restrictions the glucose binding at pH 7.4 was shown with ARS. Here, the displacement of ARS by fructose and also glucose could be followed and consequently these nanoparticles can be used for saccharide determination. Within this investigation also the temperature stability of these nanoparticles was examined and after normal sterilisation procedures (121°C, 20 min.) the binding behaviour was still unchanged. To target the selectivity of the used polymeric networks, molecular imprinting was used as a technique for creating artificial binding pockets on a molecular scale. As functional monomer 3-methacrylamidobenzoboroxole was introduced for the recognition of fructose. In comparison to polymers prepared with vinylphenylboronic acid the benzoboroxole containing polymer had a stronger binding at pH 7.4 which was shown for the first time. In addition, another imprinted polymer was synthesised especially for the recognition of glucose and fructose employing biomimetic saccharide analogues as template molecule. The advantage to use the saccharide analogues is the defined template-functional monomer complex during the polymerisation which is not the case, for example, for glucose-boronic acid interaction. The biomimetic character was proven through structural superimposition of crystal structures of the analogues with already described crystal structures of boronic acid esters of glucose and fructose. A molecularly imprinted polymer was synthesised with vinylphenylboronic acid as the functional monomer to show that both glucose and fructose are able to bind to the polymer which was predicted by the structural similarity of the analogues. The major scientific contributions of this thesis are • the determination of binding constants for some, not yet reported saccharide - boronic acid / benzoboroxole pairs, • the use of ARS as electrochemical reporter for saccharide detection, • the thermodynamic characterisation of a saccharide binding nanoparticle system containing benzoboroxole and functioning at pH 7.4, • the use of a polymerisable benzoboroxole as functional monomer for saccharide recognition in neutral, aqueous environments • and the synthesis and utilisation of biomimetic saccharide analogues as template molecules especially for the development of a glucose binding MIP.}, language = {en} }