@phdthesis{Eren2024, author = {Eren, Enis Oğuzhan}, title = {Covalent anode materials for high-energy sodium-ion batteries}, doi = {10.25932/publishup-62258}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-622585}, school = {Universit{\"a}t Potsdam}, pages = {xi, 153}, year = {2024}, abstract = {The reliance on fossil fuels has resulted in an abnormal increase in the concentration of greenhouse gases, contributing to the global climate crisis. In response, a rapid transition to renewable energy sources has begun, particularly lithium-ion batteries, playing a crucial role in the green energy transformation. However, concerns regarding the availability and geopolitical implications of lithium have prompted the exploration of alternative rechargeable battery systems, such as sodium-ion batteries. Sodium is significantly abundant and more homogeneously distributed in the crust and seawater, making it easier and less expensive to extract than lithium. However, because of the mysterious nature of its components, sodium-ion batteries are not yet sufficiently advanced to take the place of lithium-ion batteries. Specifically, sodium exhibits a more metallic character and a larger ionic radius, resulting in a different ion storage mechanism utilized in lithium-ion batteries. Innovations in synthetic methods, post-treatments, and interface engineering clearly demonstrate the significance of developing high-performance carbonaceous anode materials for sodium-ion batteries. The objective of this dissertation is to present a systematic approach for fabricating efficient, high-performance, and sustainable carbonaceous anode materials for sodium-ion batteries. This will involve a comprehensive investigation of different chemical environments and post-modification techniques as well. This dissertation focuses on three main objectives. Firstly, it explores the significance of post-synthetic methods in designing interfaces. A conformal carbon nitride coating is deposited through chemical vapor deposition on a carbon electrode as an artificial solid-electrolyte interface layer, resulting in improved electrochemical performance. The interaction between the carbon nitride artificial interface and the carbon electrode enhances initial Coulombic efficiency, rate performance, and total capacity. Secondly, a novel process for preparing sulfur-rich carbon as a high-performing anode material for sodium-ion batteries is presented. The method involves using an oligo-3,4-ethylenedioxythiophene precursor for high sulfur content hard carbon anode to investigate the sulfur heteroatom effect on the electrochemical sodium storage mechanism. By optimizing the condensation temperature, a significant transformation in the materials' nanostructure is achieved, leading to improved electrochemical performance. The use of in-operando small-angle X-ray scattering provides valuable insights into the interaction between micropores and sodium ions during the electrochemical processes. Lastly, the development of high-capacity hard carbon, derived from 5-hydroxymethyl furfural, is examined. This carbon material exhibits exceptional performance at both low and high current densities. Extensive electrochemical and physicochemical characterizations shed light on the sodium storage mechanism concerning the chemical environment, establishing the material's stability and potential applications in sodium-ion batteries.}, language = {en} } @phdthesis{Kubo2011, author = {Kubo, Shiori}, title = {Nanostructured carbohydrate-derived carbonaceous materials}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-53157}, school = {Universit{\"a}t Potsdam}, year = {2011}, abstract = {Nanoporous carbon materials are widely used in industry as adsorbents or catalyst supports, whilst becoming increasingly critical to the developing fields of energy storage / generation or separation technologies. In this thesis, the combined use of carbohydrate hydrothermal carbonisation (HTC) and templating strategies is demonstrated as an efficient route to nanostructured carbonaceous materials. HTC is an aqueous-phase, low-temperature (e.g. 130 - 200 °C) carbonisation, which proceeds via dehydration / poly-condensation of carbon precursors (e.g. carbohydrates and their derivatives), allowing facile access to highly functional carbonaceous materials. Whilst possessing utile, modifiable surface functional groups (e.g. -OH and -C=O-containing moieties), materials synthesised via HTC typically present limited accessible surface area or pore volume. Therefore, this thesis focuses on the development of fabrication routes to HTC materials which present enhanced textural properties and well-defined porosity. In the first discussed synthesis, a combined hard templating / HTC route was investigated using a range of sacrificial inorganic templates (e.g. mesoporous silica beads and macroporous alumina membranes (AAO)). Via pore impregnation of mesoporous silica beads with a biomass-derived carbon source (e.g. 2-furaldehyde) and subsequent HTC at 180 oC, an inorganic / carbonaceous hybrid material was produced. Removal of the template component by acid etching revealed the replication of the silica into mesoporous carbonaceous spheres (particle size ~ 5 μm), representing the inverse morphological structure of the original inorganic body. Surface analysis (e.g. FTIR) indicated a material decorated with hydrophilic (oxygenated) functional groups. Further thermal treatment at increasingly elevated temperatures (e.g. at 350, 550, 750 oC) under inert atmosphere allowed manipulation of functionalities from polar hydrophilic to increasingly non-polar / hydrophobic structural motifs (e.g. extension of the aromatic / pseudo-graphitic nature), thus demonstrating a process capable of simultaneous control of nanostructure and surface / bulk chemistry. As an extension of this approach, carbonaceous tubular nanostructures with controlled surface functionality were synthesised by the nanocasting of uniform, linear macropores of an AAO template (~ 200 nm). In this example, material porosity could be controlled, showing increasingly microporous tube wall features as post carbonisation temperature increased. Additionally, by taking advantage of modifiable surface groups, the introduction of useful polymeric moieties (i.e. grafting of thermoresponsive poly(N-isopropylacrylamide)) was also demonstrated, potentially enabling application of these interesting tubular structures in the fields of biotechnology (e.g. enzyme immobilization) and medicine (e.g. as drug micro-containers). Complimentary to these hard templating routes, a combined HTC / soft templating route for the direct synthesis of ordered porous carbonaceous materials was also developed. After selection of structural directing agents and optimisation of synthesis composition, the F127 triblock copolymer (i.e. ethylene oxide (EO)106 propylene oxide (PO)70 ethylene oxide (EO)106) / D-Fructose system was extensively studied. D-Fructose was found to be a useful carbon precursor as the HTC process could be performed at 130 oC, thus allowing access to stable micellular phase. Thermolytic template removal from the synthesised ordered copolymer / carbon composite yielded functional cuboctahedron single crystalline-like particles (~ 5 μm) with well ordered pore structure of a near perfect cubic Im3m symmetry. N2 sorption analysis revealed a predominantly microporous carbonaceous material (i.e. Type I isotherm, SBET = 257 m2g-1, 79 \% microporosity) possessing a pore size of ca. 0.9 nm. The addition of a simple pore swelling additive (e.g. trimethylbenzene (TMB)) to this system was found to direct pore size into the mesopore size domain (i.e. Type IV isotherm, SBET = 116 m2g-1, 60 \% mesoporosity) generating pore size of ca. 4 nm. It is proposed that in both cases as HTC proceeds to generate a polyfuran-like network, the organised block copolymer micellular phase is essentially "templated", either via hydrogen bonding between hydrophilic poly(EO) moiety and the carbohydrate or via hydrophobic interaction between hydrophobic poly(PO) moiety and forming polyfuran-like network, whilst the additive TMB presumably interact with poly(PO) moieties, thus swelling the hydrophobic region expanding the micelle template size further into the mesopore range.}, language = {en} } @phdthesis{Schipper2014, author = {Schipper, Florian}, title = {Biomass derived carbon for new energy storage technologies}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-72045}, school = {Universit{\"a}t Potsdam}, year = {2014}, abstract = {The thesis deals with the production and evaluation of porous carbon materials for energy storage technologies, namely super capacitors and lithium sulfur batteries.}, language = {de} } @phdthesis{Schutjajew2021, author = {Schutjajew, Konstantin}, title = {Electrochemical sodium storage in non-graphitizing carbons - insights into mechanisms and synthetic approaches towards high-energy density materials}, doi = {10.25932/publishup-54189}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-541894}, school = {Universit{\"a}t Potsdam}, pages = {v, 148}, year = {2021}, abstract = {To achieve a sustainable energy economy, it is necessary to turn back on the combustion of fossil fuels as a means of energy production and switch to renewable sources. However, their temporal availability does not match societal consumption needs, meaning that renewably generated energy must be stored in its main generation times and allocated during peak consumption periods. Electrochemical energy storage (EES) in general is well suited due to its infrastructural independence and scalability. The lithium ion battery (LIB) takes a special place, among EES systems due to its energy density and efficiency, but the scarcity and uneven geological occurrence of minerals and ores vital for many cell components, and hence the high and fluctuating costs will decelerate its further distribution. The sodium ion battery (SIB) is a promising successor to LIB technology, as the fundamental setup and cell chemistry is similar in the two systems. Yet, the most widespread negative electrode material in LIBs, graphite, cannot be used in SIBs, as it cannot store sufficient amounts of sodium at reasonable potentials. Hence, another carbon allotrope, non-graphitizing or hard carbon (HC) is used in SIBs. This material consists of turbostratically disordered, curved graphene layers, forming regions of graphitic stacking and zones of deviating layers, so-called internal or closed pores. The structural features of HC have a substantial impact of the charge-potential curve exhibited by the carbon when it is used as the negative electrode in an SIB. At defects and edges an adsorption-like mechanism of sodium storage is prevalent, causing a sloping voltage curve, ill-suited for the practical application in SIBs, whereas a constant voltage plateau of relatively high capacities is found immediately after the sloping region, which recent research attributed to the deposition of quasimetallic sodium into the closed pores of HC. Literature on the general mechanism of sodium storage in HCs and especially the role of the closed pore is abundant, but the influence of the pore geometry and chemical nature of the HC on the low-potential sodium deposition is yet in an early stage. Therefore, the scope of this thesis is to investigate these relationships using suitable synthetic and characterization methods. Materials of precisely known morphology, porosity, and chemical structure are prepared in clear distinction to commonly obtained ones and their impact on the sodium storage characteristics is observed. Electrochemical impedance spectroscopy in combination with distribution of relaxation times analysis is further established as a technique to study the sodium storage process, in addition to classical direct current techniques, and an equivalent circuit model is proposed to qualitatively describe the HC sodiation mechanism, based on the recorded data. The obtained knowledge is used to develop a method for the preparation of closed porous and non-porous materials from open porous ones, proving not only the necessity of closed pores for efficient sodium storage, but also providing a method for effective pore closure and hence the increase of the sodium storage capacity and efficiency of carbon materials. The insights obtained and methods developed within this work hence not only contribute to the better understanding of the sodium storage mechanism in carbon materials of SIBs, but can also serve as guidance for the design of efficient electrode materials.}, language = {en} }