@article{BalkBehlLendlein2020, author = {Balk, Maria and Behl, Marc and Lendlein, Andreas}, title = {Actuators based on oligo[(epsilon-caprolactone)-co-glycolide] with accelerated hydrolytic degradation}, series = {MRS advances : a journal of the Materials Research Society (MRS)}, volume = {5}, journal = {MRS advances : a journal of the Materials Research Society (MRS)}, number = {12-13}, publisher = {Cambridge University Press}, address = {New York, NY}, issn = {2059-8521}, doi = {10.1557/adv.2019.447}, pages = {655 -- 666}, year = {2020}, abstract = {Polyester-based shape-memory polymer actuators are multifunctional materials providing reversible macroscopic shape shifts as well as hydrolytic degradability. Here, the function-function interdependencies (between shape shifts and degradation behaviour) will determine actuation performance and its life time. In this work, glycolide units were incorporated in poly(epsilon-caprolactone) based actuator materials in order to achieve an accelerated hydrolytic degradation and to explore the function-function relationship. Three different oligo[(epsilon-caprolactone)-co-glycolide] copolymers (OCGs) with similar molecular weights (10.5 +/- 0.5 kg center dot mol(-1)) including a glycolide content of 8, 16, and 26 mol\% (ratio 1:1:1 wt\%) terminated with methacrylated moieties were crosslinked. The obtained actuators provided a broad melting transition in the range from 27 to 44 degrees C. The hydrolytic degradation of programmed OCG actuators (200\% of elongation) resulted in a reduction of sample mass to 51 wt\% within 21 days at pH = 7.4 and 40 degrees C. Degradation results in a decrease of T-m associated to the actuating units and increasing T-m associated to the skeleton forming units. The actuation capability decreased almost linear as function of time. After 11 days of hydrolytic degradation the shape-memory functionality was lost. Accordingly, a fast degradation behaviour as required, e.g., for actuator materials intended as implant material can be realized.}, language = {en} }