@article{AdesinaBlockGuenteretal.2023, author = {Adesina, Morenike O. and Block, Inga and G{\"u}nter, Christina and Unuabonah, Emmanuel Iyayi and Taubert, Andreas}, title = {Efficient Removal of Tetracycline and Bisphenol A from Water with a New Hybrid Clay/TiO2 Composite}, series = {ACS Omega}, volume = {8}, journal = {ACS Omega}, number = {24}, publisher = {American Chemical Society}, address = {Washington}, issn = {2470-1343}, doi = {10.1021/acsomega.3c00184}, pages = {21594 -- 21604}, year = {2023}, abstract = {New TiO2 hybrid composites were prepared fromkaolinclay, predried and carbonized biomass, and titanium tetraisopropoxideand explored for tetracycline (TET) and bisphenol A (BPA) removalfrom water. Overall, the removal rate is 84\% for TET and 51\% for BPA.The maximum adsorption capacities (q (m))are 30 and 23 mg/g for TET and BPA, respectively. These capacitiesare far greater than those obtained for unmodified TiO2. Increasing the ionic strength of the solution does not change theadsorption capacity of the adsorbent. pH changes only slightly changeBPA adsorption, while a pH > 7 significantly reduces the adsorptionof TET on the material. The Brouers-Sotolongo fractal modelbest describes the kinetic data for both TET and BPA adsorption, predictingthat the adsorption process occurs via a complex mechanism involvingvarious forces of attraction. Temkin and Freundlich isotherms, whichbest fit the equilibrium adsorption data for TET and BPA, respectively,suggest that adsorption sites are heterogeneous in nature. Overall,the composite materials are much more effective for TET removal fromaqueous solution than for BPA. This phenomenon is assigned to a differencein the TET/adsorbent interactions vs the BPA/adsorbent interactions:the decisive factor appears to be favorable electrostatic interactionsfor TET yielding a more effective TET removal.}, language = {en} } @article{MazareiPenschkeSaalfrank2023, author = {Mazarei, Elham and Penschke, Christopher and Saalfrank, Peter}, title = {Band gap engineering in two-dimensional materials by functionalization}, series = {ACS Omega}, volume = {8}, journal = {ACS Omega}, number = {24}, publisher = {American Chemical Society}, address = {Washington}, issn = {2470-1343}, doi = {10.1021/acsomega.3c02068}, pages = {22026 -- 22041}, year = {2023}, abstract = {Graphene is well-knownfor its unique combination of electricaland mechanical properties. However, its vanishing band gap limitsthe use of graphene in microelectronics. Covalent functionalizationof graphene has been a common approach to address this critical issueand introduce a band gap. In this Article, we systematically analyzethe functionalization of single-layer graphene (SLG) and bilayer graphene(BLG) with methyl (CH3) using periodic density functionaltheory (DFT) at the PBE+D3 level of theory. We also include a comparisonof methylated single-layer and bilayer graphene, as well as a discussionof different methylation options (radicalic, cationic, and anionic).For SLG, methyl coverages ranging from 1/8 to 1/1, (i.e.,the fully methylated analogue of graphane) are considered. We findthat up to a coverage theta of 1/2, graphene readily accepts CH3, with neighbor CH3 groups preferring trans positions. Above theta = 1/2, the tendency to accept further CH3 weakens and the lattice constant increases. The band gapbehaves less regularly, but overall it increases with increasing methylcoverage. Thus, methylated graphene shows potential for developingband gap-tuned microelectronics devices and may offer further functionalizationoptions. To guide in the interpretation of methylation experiments,vibrational signatures of various species are characterized by normal-modeanalysis (NMA), their vibrational density of states (VDOS), and infrared(IR) spectra, the latter two are obtained from ab initio moleculardynamics (AIMD) in combination with a velocity-velocity autocorrelationfunction (VVAF) approach.}, language = {en} } @article{KleinpeterKoch2023, author = {Kleinpeter, Erich and Koch, Andreas}, title = {The multiple bond character of the carbon-boron bond in boron trapped N-heterocyclic carbenes (NHCs) and cyclic(alkyl)(amino) carbenes (CAACs) on the magnetic criterion}, series = {Tetrahedron}, volume = {140}, journal = {Tetrahedron}, publisher = {Elsevier}, address = {Oxford}, issn = {0040-4020}, doi = {10.1016/j.tet.2023.133469}, pages = {13}, year = {2023}, abstract = {Geometry, 11B, 13C chemical shifts and the spatial magnetic properties (Through-Space NMR Shieldings -TSNMRS) of both cations and anions of boron-trapped N-heterocyclic carbenes (NHCs) and cyclic (alkyl)(amino)carbenes (CAACs) and of the corresponding diborane/diborene/diboryne dis-carbene adducts have been calculated using the GIAO perturbation method employing the nucleus independent chemical shift (NICS) concept; the TSNMRS results are visualized as iso-chemical-shielding surfaces (ICSS) of various size and direction. The ICSS of the TSNMRS (actually the anisotropy effects measurable in 1H NMR spectroscopy) are employed to qualify and quantify the present multiple bond character of the Carbene-Boron bond in the trapped NHCs and CAACs. Results are confirmed by bond length and 11B/13C chemical shift variations. Thus the partial multiple bond character of the Carbene-Boron bond cannot be expressed by the arrow of weak, much longer dative bonds and should be omitted as in other covalent lone pair-it or triel bonds. \& COPY; 2023 Elsevier Ltd. All rights reserved.}, language = {en} } @article{SchlappaBresselReichetal.2023, author = {Schlappa, Stephanie and Bressel, Lena and Reich, Oliver and M{\"u}nzberg, Marvin}, title = {Advanced particle size analysis in high-solid-content polymer dispersions using photon density wave spectroscopy}, series = {Polymers}, volume = {15}, journal = {Polymers}, number = {15}, publisher = {MDPI}, address = {Basel}, issn = {2073-4360}, doi = {10.3390/polym15153181}, pages = {17}, year = {2023}, abstract = {High-solid-content polystyrene and polyvinyl acetate dispersions of polymer particles with a 50 nm to 500 nm mean particle diameter and 12-55\% (w/w) solid content have been produced via emulsion polymerization and characterized regarding their optical and physical properties. Both systems have been analyzed with common particle-size-measuring techniques like dynamic light scattering (DLS) and static light scattering (SLS) and compared to inline particle size distribution (PSD) measurements via photon density wave (PDW) spectroscopy in undiluted samples. It is shown that particle size measurements of undiluted polystyrene dispersions are in good agreement between analysis methods. However, for polyvinyl acetate particles, size determination is challenging due to bound water in the produced polymer. For the first time, water-swelling factors were determined via an iterative approach of PDW spectroscopy error (X-2) minimization. It is shown that water-swollen particles can be analyzed in high-solid-content solutions and their physical properties can be assumed to determine the refractive index, density, and volume fraction in dispersion. It was found that assumed water swelling improved the reduced scattering coefficient fit by PDW spectroscopy by up to ten times and particle size determination was refined and enabled. Particle size analysis of the water-swollen particles agreed well with offline-based state-of-the-art techniques.}, language = {en} } @article{XuDongJieetal.2022, author = {Xu, Yaolin and Dong, Kang and Jie, Yulin and Adelhelm, Philipp and Chen, Yawei and Xu, Liang and Yu, Peiping and Kim, Junghwa and Kochovski, Zdravko and Yu, Zhilong and Li, Wanxia and LeBeau, James and Shao-Horn, Yang and Cao, Ruiguo and Jiao, Shuhong and Cheng, Tao and Manke, Ingo and Lu, Yan}, title = {Promoting mechanistic understanding of lithium deposition and solid-electrolyte interphase (SEI) formation using advanced characterization and simulation methods: recent progress, limitations, and future perspectives}, series = {Avanced energy materials}, volume = {12}, journal = {Avanced energy materials}, number = {19}, publisher = {Wiley}, address = {Weinheim}, issn = {1614-6832}, doi = {10.1002/aenm.202200398}, pages = {22}, year = {2022}, abstract = {In recent years, due to its great promise in boosting the energy density of lithium batteries for future energy storage, research on the Li metal anode, as an alternative to the graphite anode in Li-ion batteries, has gained significant momentum. However, the practical use of Li metal anodes has been plagued by unstable Li (re)deposition and poor cyclability. Although tremendous efforts have been devoted to the stabilization of Li metal anodes, the mechanisms of electrochemical (re-)deposition/dissolution of Li and solid-electrolyte-interphase (SEI) formation remain elusive. This article highlights the recent mechanistic understandings and observations of Li deposition/dissolution and SEI formation achieved from advanced characterization techniques and simulation methods, and discusses major limitations and open questions in these processes. In particular, the authors provide their perspectives on advanced and emerging/potential methods for obtaining new insights into these questions. In addition, they give an outlook into cutting-edge interdisciplinary research topics for Li metal anodes. It pushes beyond the current knowledge and is expected to accelerate development toward a more in-depth and comprehensive understanding, in order to guide future research on Li metal anodes toward practical application.}, language = {en} } @article{MayerLeverPicconietal.2022, author = {Mayer, Dennis and Lever, Fabiano and Picconi, David and Metje, Jan and Ališauskas, Skirmantas and Calegari, Francesca and D{\"u}sterer, Stefan and Ehlert, Christopher and Feifel, Raimund and Niebuhr, Mario and Manschwetus, Bastian and Kuhlmann, Marion and Mazza, Tommaso and Robinson, Matthew Scott and Squibb, Richard J. and Trabattoni, Andrea and Wallner, M{\aa}ns and Saalfrank, Peter and Wolf, Thomas J. A. and G{\"u}hr, Markus}, title = {Following excited-state chemical shifts in molecular ultrafast x-ray photoelectron spectroscopy}, series = {Nature communications}, volume = {13}, journal = {Nature communications}, number = {1}, publisher = {Nature Research}, address = {Berlin}, issn = {2041-1723}, doi = {10.1038/s41467-021-27908-y}, pages = {9}, year = {2022}, abstract = {Imaging the charge flow in photoexcited molecules would provide key information on photophysical and photochemical processes. Here the authors demonstrate tracking in real time after photoexcitation the change in charge density at a specific site of 2-thiouracil using time-resolved X-ray photoelectron spectroscopy. The conversion of photon energy into other energetic forms in molecules is accompanied by charge moving on ultrafast timescales. We directly observe the charge motion at a specific site in an electronically excited molecule using time-resolved x-ray photoelectron spectroscopy (TR-XPS). We extend the concept of static chemical shift from conventional XPS by the excited-state chemical shift (ESCS), which is connected to the charge in the framework of a potential model. This allows us to invert TR-XPS spectra to the dynamic charge at a specific atom. We demonstrate the power of TR-XPS by using sulphur 2p-core-electron-emission probing to study the UV-excited dynamics of 2-thiouracil. The method allows us to discover that a major part of the population relaxes to the molecular ground state within 220-250 fs. In addition, a 250-fs oscillation, visible in the kinetic energy of the TR-XPS, reveals a coherent exchange of population among electronic states.}, language = {en} } @article{RotheZhaoMuelleretal.2021, author = {Rothe, Martin and Zhao, Yuhang and M{\"u}ller, Johannes and Kewes, G{\"u}nter and Koch, Christoph T. and Lu, Yan and Benson, Oliver}, title = {Self-assembly of plasmonic nanoantenna-waveguide structures for subdiffractional chiral sensing}, series = {ACS nano}, volume = {15}, journal = {ACS nano}, number = {1}, publisher = {American Chemical Society}, address = {Washington}, issn = {1936-0851}, doi = {10.1021/acsnano.0c05240}, pages = {351 -- 361}, year = {2021}, abstract = {Spin-momentum locking is a peculiar effect in the near-field of guided optical or plasmonic modes. It can be utilized to map the spinning or handedness of electromagnetic fields onto the propagation direction. This motivates a method to probe the circular dichroism of an illuminated chiral object. In this work, we demonstrate local, subdiffraction limited chiral coupling of light and propagating surface plasmon polaritons in a self-assembled system of a gold nanoantenna and a silver nanowire. A thin silica shell around the nanowire provides precise distance control and also serves as a host for fluorescent molecules, which indicate the direction of plasmon propagation. We characterize our nanoantenna-nanowire systems comprehensively through correlated electron microscopy, energy-dispersive X-ray spectroscopy, dark-field, and fluorescence imaging. Three-dimensional numerical simulations support the experimental findings. Besides our measurement of far-field polarization, we estimate sensing capabilities and derive not only a sensitivity of 1 mdeg for the ellipticity of the light field, but also find 10(3) deg cm(2)/dmol for the circular dichroism of an analyte locally introduced in the hot spot of the antenna-wire system. Thorough modeling of a prototypical design predicts on-chip sensing of chiral analytes. This introduces our system as an ultracompact sensor for chiral response far below the diffraction limit.}, language = {en} } @article{NingYuMeietal.2022, author = {Ning, Jiaoyi and Yu, Hongtao and Mei, Shilin and Sch{\"u}tze, Yannik and Risse, Sebastian and Kardjilov, Nikolay and Hilger, Andr{\´e} and Manke, Ingo and Bande, Annika and Ruiz, Victor G. and Dzubiella, Joachim and Meng, Hong and Lu, Yan}, title = {Constructing binder- and carbon additive-free organosulfur cathodes based on conducting thiol-polymers through electropolymerization for lithium-sulfur batteries}, series = {ChemSusChem}, volume = {15}, journal = {ChemSusChem}, number = {14}, publisher = {Wiley}, address = {Weinheim}, issn = {1864-5631}, doi = {10.1002/cssc.202200434}, pages = {10}, year = {2022}, abstract = {Herein, the concept of constructing binder- and carbon additive-free organosulfur cathode was proved based on thiol-containing conducting polymer poly(4-(thiophene-3-yl) benzenethiol) (PTBT). The PTBT featured the polythiophene-structure main chain as a highly conducting framework and the benzenethiol side chain to copolymerize with sulfur and form a crosslinked organosulfur polymer (namely S/PTBT). Meanwhile, it could be in-situ deposited on the current collector by electro-polymerization, making it a binder-free and free-standing cathode for Li-S batteries. The S/PTBT cathode exhibited a reversible capacity of around 870 mAh g(-1) at 0.1 C and improved cycling performance compared to the physically mixed cathode (namely S\&PTBT). This multifunction cathode eliminated the influence of the additives (carbon/binder), making it suitable to be applied as a model electrode for operando analysis. Operando X-ray imaging revealed the remarkable effect in the suppression of polysulfides shuttle via introducing covalent bonds, paving the way for the study of the intrinsic mechanisms in Li-S batteries.}, language = {en} } @article{LauLiuMaieretal.2021, author = {Lau, Skadi and Liu, Yue and Maier, Anna and Braune, Steffen and Gossen, Manfred and Neffe, Axel T. and Lendlein, Andreas}, title = {Establishment of an in vitro thrombogenicity test system with cyclic olefin copolymer substrate for endothelial layer formation}, series = {MRS communications / a publication of the Materials Research Society}, volume = {11}, journal = {MRS communications / a publication of the Materials Research Society}, number = {5}, publisher = {Springer}, address = {Berlin}, issn = {2159-6867}, doi = {10.1557/s43579-021-00072-6}, pages = {559 -- 567}, year = {2021}, abstract = {In vitro thrombogenicity test systems require co-cultivation of endothelial cells and platelets under blood flow-like conditions. Here, a commercially available perfusion system is explored using plasma-treated cyclic olefin copolymer (COC) as a substrate for the endothelial cell layer. COC was characterized prior to endothelialization and co-cultivation with platelets under static or flow conditions. COC exhibits a low roughness and a moderate hydrophilicity. Flow promoted endothelial cell growth and prevented platelet adherence. These findings show the suitability of COC as substrate and the importance of blood flow-like conditions for the assessment of the thrombogenic risk of drugs or cardiovascular implant materials.}, language = {en} } @article{NeusserSunTanetal.2022, author = {Neusser, David and Sun, Bowen and Tan, Wen Liang and Thomsen, Lars and Schultz, Thorsten and Perdigon-Toro, Lorena and Koch, Norbert and Shoaee, Safa and McNeill, Christopher R. and Neher, Dieter and Ludwigs, Sabine}, title = {Spectroelectrochemically determined energy levels of PM6:Y6 blends and their relevance to solar cell performance}, series = {Journal of materials chemistry : C, Materials for optical and electronic devices}, volume = {10}, journal = {Journal of materials chemistry : C, Materials for optical and electronic devices}, number = {32}, publisher = {Royal Society of Chemistry}, address = {Cambridge}, issn = {2050-7526}, doi = {10.1039/d2tc01918c}, pages = {11565 -- 11578}, year = {2022}, abstract = {Recent advances in organic solar cell performance have been mainly driven forward by combining high-performance p-type donor-acceptor copolymers (e.g.PM6) and non-fullerene small molecule acceptors (e.g.Y6) as bulk-heterojunction layers. A general observation in such devices is that the device performance, e.g., the open-circuit voltage, is strongly dependent on the processing solvent. While the morphology is a typically named key parameter, the energetics of donor-acceptor blends are equally important, but less straightforward to access in the active multicomponent layer. Here, we propose to use spectral onsets during electrochemical cycling in a systematic spectroelectrochemical study of blend films to access the redox behavior and the frontier orbital energy levels of the individual compounds. Our study reveals that the highest occupied molecular orbital offset (Delta E-HOMO) in PM6:Y6 blends is similar to 0.3 eV, which is comparable to the binding energy of Y6 excitons and therefore implies a nearly zero driving force for the dissociation of Y6 excitons. Switching the PM6 orientation in the blend films from face-on to edge-on in bulk has only a minor influence on the positions of the energy levels, but shows significant differences in the open circuit voltage of the device. We explain this phenomenon by the different interfacial molecular orientations, which are known to affect the non-radiative decay rate of the charge-transfer state. We compare our results to ultraviolet photoelectron spectroscopy data, which shows distinct differences in the HOMO offsets in the PM6:Y6 blend compared to neat films. This highlights the necessity to measure the energy levels of the individual compounds in device-relevant blend films.}, language = {en} } @article{TungSunWangetal.2021, author = {Tung, Wing Tai and Sun, Xianlei and Wang, Weiwei and Xu, Xun and Ma, Nan and Lendlein, Andreas}, title = {Structure, mechanical properties and degradation behavior of electrospun PEEU fiber meshes and films}, series = {MRS advances : a journal of the Materials Research Society (MRS)}, volume = {6}, journal = {MRS advances : a journal of the Materials Research Society (MRS)}, number = {10}, publisher = {Springer Nature Switzerland AG}, address = {Cham}, issn = {2059-8521}, doi = {10.1557/s43580-020-00001-0}, pages = {276 -- 282}, year = {2021}, abstract = {The capability of a degradable implant to provide mechanical support depends on its degradation behavior. Hydrolytic degradation was studied for a polyesteretherurethane (PEEU70), which consists of poly(p-dioxanone) (PPDO) and poly(epsilon-caprolactone) (PCL) segments with a weight ratio of 70:30 linked by diurethane junction units. PEEU70 samples prepared in the form of meshes with average fiber diameters of 1.5 mu m (mesh1.5) and 1.2 mu m (mesh1.2), and films were sterilized and incubated in PBS at 37 degrees C with 5 vol\% CO2 supply for 1 to 6 weeks. Degradation features, such as cracks or wrinkles, became apparent from week 4 for all samples. Mass loss was found to be 11 wt\%, 6 wt\%, and 4 wt\% for mesh1.2, mesh1.5, and films at week 6. The elongation at break decreased to under 20\% in two weeks for mesh1.2. In case of the other two samples, this level of degradation was achieved after 4 weeks. The weight average molecular weight of both PEEU70 mesh and film samples decreased to below 30 kg/mol when elongation at break dropped below 20\%. The time period of sustained mechanical stability of PEEU70-based meshes depends on the fiber diameter and molecular weight.}, language = {en} } @article{StefancuNanZhuetal.2022, author = {Stefancu, Andrei and Nan, Lin and Zhu, Li and Chis, Vasile and Bald, Ilko and Liu, Min and Leopold, Nicolae and Maier, Stefan A. and Cortes, Emiliano}, title = {Controlling plasmonic chemistry pathways through specific ion effects}, series = {Advanced optical materials}, volume = {10}, journal = {Advanced optical materials}, number = {14}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {2195-1071}, doi = {10.1002/adom.202200397}, pages = {10}, year = {2022}, abstract = {Plasmon-driven dehalogenation of brominated purines has been recently explored as a model system to understand fundamental aspects of plasmon-assisted chemical reactions. Here, it is shown that divalent Ca2+ ions strongly bridge the adsorption of bromoadenine (Br-Ade) to Ag surfaces. Such ion-mediated binding increases the molecule's adsorption energy leading to an overlap of the metal energy states and the molecular states, enabling the chemical interface damping (CID) of the plasmon modes of the Ag nanostructures (i.e., direct electron transfer from the metal to Br-Ade). Consequently, the conversion of Br-Ade to adenine almost doubles following the addition of Ca2+. These experimental results, supported by theoretical calculations of the local density of states of the Ag/Br-Ade complex, indicate a change of the charge transfer pathway driving the dehalogenation reaction, from Landau damping (in the lack of Ca2+ ions) to CID (after the addition of Ca2+). The results show that the surface dynamics of chemical species (including water molecules) play an essential role in charge transfer at plasmonic interfaces and cannot be ignored. It is envisioned that these results will help in designing more efficient nanoreactors, harnessing the full potential of plasmon-assisted chemistry.}, language = {en} } @article{ZhaoOpitzEljarratetal.2021, author = {Zhao, Yuhang and Opitz, Andreas and Eljarrat, Alberto and Kochovski, Zdravko and Koch, Christoph and Koch, Norbert and Lu, Yan}, title = {Kinetic study on the adsorption of 2,3,5,6-tetrafluoro-7,7,8,8-tetracyanoquinodimethane on Ag nanoparticles in chloroform}, series = {ACS applied nano materials}, volume = {4}, journal = {ACS applied nano materials}, number = {11}, publisher = {American Chemical Society}, address = {Washington}, issn = {2574-0970}, doi = {10.1021/acsanm.1c02153}, pages = {11625 -- 11635}, year = {2021}, abstract = {In this study, the kinetics of the adsorption of 2,3,5,6-tetrafluoro-7,7,8,8-tetracyanoquinodimethane (F(4)TCNQ) on the surface of Ag nanoparticles (Ag NPs) in chloroform has been intensively investigated, as molecular doping is known to play a crucial role in organic electronic devices. Based on the results obtained from UV-visible (vis)-near-infrared (NIR) absorption spectroscopy, cryogenic transmission electron microscopy, scanning nanobeam electron diffraction, and electron energy loss spectroscopy, a two-step interaction kinetics has been proposed for the Ag NPs and F(4)TCNQ molecules, which includes the first step of electron transfer from Ag NPs to F(4)TCNQ indicated by the ionization of F(4)TCNQ and the second step of the formation of a Ag-F(4)TCNQ complex. The whole process has been followed via UV-vis-NIR absorption spectroscopy, which reveals distinct kinetics at two stages: the instantaneous ionization and the long-term complex formation. The kinetics and the influence of the molar ratio of Ag NPs/F(4)TCNQ molecules on the interaction between Ag NPs and F(4)TCNQ molecules in an organic solution are reported herein for the first time. Furthermore, the control experiment with silica-coated Ag NPs manifests that the charge transfer at the surface between Ag NPs and F(4)TCNQ molecules is prohibited by a silica layer of 18 nm.}, language = {en} } @article{ZhouXuMaetal.2021, author = {Zhou, Shuo and Xu, Xun and Ma, Nan and Jung, Friedrich and Lendlein, Andreas}, title = {Influence of sterilization conditions on sulfate-functionalized polyGGE}, series = {Clinical hemorheology and microcirculation : blood flow and vessels}, volume = {79}, journal = {Clinical hemorheology and microcirculation : blood flow and vessels}, number = {4}, publisher = {IOS Press}, address = {Amsterdam}, issn = {1386-0291}, doi = {10.3233/CH-211241}, pages = {597 -- 608}, year = {2021}, abstract = {Sulfated biomolecules are known to influence numerous biological processes in all living organisms. Particularly, they contribute to prevent and inhibit the hypercoagulation condition. The failure of polymeric implants and blood contacting devices is often related to hypercoagulation and microbial contamination. Here, bioactive sulfated biomacromolecules are mimicked by sulfation of poly(glycerol glycidyl ether) (polyGGE) films. Autoclaving, gamma-ray irradiation and ethylene oxide (EtO) gas sterilization techniques were applied to functionalized materials. The sulfate group density and hydrophilicity of sulfated polymers were decreased while chain mobility and thermal degradation were enhanced post autoclaving when compared to those after EtO sterilization. These results suggest that a quality control after sterilization is mandatory to ensure the amount and functionality of functionalized groups are retained.}, language = {en} } @article{MichaelisAengenheisterTuchtenhagenetal.2022, author = {Michaelis, Vivien and Aengenheister, Leonie and Tuchtenhagen, Max and Rinklebe, J{\"o}rg and Ebert, Franziska and Schwerdtle, Tanja and Buerki-Thurnherr, Tina and Bornhorst, Julia}, title = {Differences and interactions in placental manganese and iron transfer across an in vitro model of human villous trophoblasts}, series = {International journal of molecular sciences}, volume = {23}, journal = {International journal of molecular sciences}, number = {6}, publisher = {MDPI}, address = {Basel}, issn = {1422-0067}, doi = {10.3390/ijms23063296}, pages = {18}, year = {2022}, abstract = {Manganese (Mn) as well as iron (Fe) are essential trace elements (TE) important for the maintenance of physiological functions including fetal development. However, in the case of Mn, evidence suggests that excess levels of intrauterine Mn are associated with adverse pregnancy outcomes. Although Mn is known to cross the placenta, the fundamentals of Mn transfer kinetics and mechanisms are largely unknown. Moreover, exposure to combinations of TEs should be considered in mechanistic transfer studies, in particular for TEs expected to share similar transfer pathways. Here, we performed a mechanistic in vitro study on the placental transfer of Mn across a BeWo b30 trophoblast layer. Our data revealed distinct differences in the placental transfer of Mn and Fe. While placental permeability to Fe showed a clear inverse dose-dependency, Mn transfer was largely independent of the applied doses. Concurrent exposure of Mn and Fe revealed transfer interactions of Fe and Mn, indicating that they share common transfer mechanisms. In general, mRNA and protein expression of discussed transporters like DMT1, TfR, or FPN were only marginally altered in BeWo cells despite the different exposure scenarios highlighting that Mn transfer across the trophoblast layer likely involves a combination of active and passive transport processes.}, language = {en} } @article{CrovettoKojdaYietal.2022, author = {Crovetto, Andrea and Kojda, Danny and Yi, Feng and Heinselman, Karen N. and LaVan, David A. and Habicht, Klaus and Unold, Thomas and Zakutayev, Andriy}, title = {Crystallize It before It diffuses}, series = {Journal of the american chemical society}, volume = {144}, journal = {Journal of the american chemical society}, number = {29}, publisher = {American Chemical Society}, address = {Washington}, issn = {0002-7863}, doi = {10.1021/jacs.2c04868}, pages = {13334 -- 13343}, year = {2022}, abstract = {Numerous phosphorus-rich metal phosphides containing both P-P bonds and metal-P bonds are known from the solid-state chemistry literature. A method to grow these materials in thin-film form would be desirable, as thin films are required in many applications and they are an ideal platform for high-throughput studies. In addition, the high density and smooth surfaces achievable in thin films are a significant advantage for characterization of transport and optical properties. Despite these benefits, there is hardly any published work on even the simplest binary phosphorus-rich phosphide films. Here, we demonstrate growth of single-phase CuP2 films by a two-step process involving reactive sputtering of amorphous CuP2+x and rapid annealing in an inert atmosphere. At the crystallization temperature, CuP2 is thermodynamically unstable with respect to Cu3P and P-4. However, CuP2 can be stabilized if the amorphous precursors are mixed on the atomic scale and are sufficiently close to the desired composition (neither too P poor nor too P rich). Fast formation of polycrystalline CuP2, combined with a short annealing time, makes it possible to bypass the diffusion processes responsible for decomposition. We find that thin-film CuP2 is a 1.5 eV band gap semiconductor with interesting properties, such as a high optical absorption coefficient (above 10(5) cm(-1)), low thermal conductivity (1.1 W/(K m)), and composition-insensitive electrical conductivity (around 1 S/cm). We anticipate that our processing route can be extended to other phosphorus-rich phosphides that are still awaiting thin-film synthesis and will lead to a more complete understanding of these materials and of their potential applications.}, language = {en} } @article{TungMaringXuetal.2022, author = {Tung, Wing Tai and Maring, Janita A. and Xu, Xun and Liu, Yue and Becker, Matthias and Somesh, Dipthi Bachamanda and Klose, Kristin and Wang, Weiwei and Sun, Xianlei and Ullah, Imran and Kratz, Karl and Neffe, Axel T. and Stamm, Christof and Ma, Nan and Lendlein, Andreas}, title = {In vivo performance of a cell and factor free multifunctional fiber mesh modulating postinfarct myocardial remodeling}, series = {Advanced Functional Materials}, volume = {32}, journal = {Advanced Functional Materials}, number = {31}, publisher = {Wiley}, address = {Weinheim}, issn = {1616-301X}, doi = {10.1002/adfm.202110179}, pages = {17}, year = {2022}, abstract = {Guidance of postinfarct myocardial remodeling processes by an epicardial patch system may alleviate the consequences of ischemic heart disease. As macrophages are highly relevant in balancing immune response and regenerative processes their suitable instruction would ensure therapeutic success. A polymeric mesh capable of attracting and instructing monocytes by purely physical cues and accelerating implant degradation at the cell/implant interface is designed. In a murine model for myocardial infarction the meshes are compared to those either coated with extracellular matrix or loaded with induced cardiomyocyte progenitor cells. All implants promote macrophage infiltration and polarization in the epicardium, which is verified by in vitro experiments. 6 weeks post-MI, especially the implantation of the mesh attenuates left ventricular adverse remodeling processes as shown by reduced infarct size (14.7\% vs 28-32\%) and increased wall thickness (854 mu m vs 400-600 mu m), enhanced angiogenesis/arteriogenesis (more than 50\% increase compared to controls and other groups), and improved heart function (ejection fraction = 36.8\% compared to 12.7-31.3\%). Upscaling as well as process controls is comprehensively considered in the presented mesh fabrication scheme to warrant further progression from bench to bedside.}, language = {en} } @article{BreternitzSchorr2021, author = {Breternitz, Joachim and Schorr, Susan}, title = {Symmetry relations in wurtzite nitrides and oxide nitrides and the curious case of Pmc2(1)}, series = {Acta crystallographica / International Union of Crystallography. Section A, Foundations and advances}, volume = {77}, journal = {Acta crystallographica / International Union of Crystallography. Section A, Foundations and advances}, number = {3}, publisher = {Blackwell}, address = {Oxford [u.a.]}, issn = {2053-2733}, doi = {10.1107/S2053273320015971}, pages = {208 -- 216}, year = {2021}, abstract = {Binary III-V nitrides such as AlN, GaN and InN in the wurtzite-type structure have long been considered as potent semiconducting materials because of their optoelectronic properties, amongst others. With rising concerns over the utilization of scarce elements, a replacement of the trivalent cations by others in ternary and multinary nitrides has led to the development of different variants of nitrides and oxide nitrides crystallizing in lower-symmetry variants of wurtzite. This work presents the symmetry relationships between these structural types specific to nitrides and oxide nitrides and updates some prior work on this matter. The non-existence of compounds crystallizing in Pmc2(1), formally the highest subgroup of the wurtzite type fulfilling Pauling's rules for 1:1:2 stoichiometries, has been puzzling scientists for a while; a rationalization is given, from a crystallographic basis, of why this space group is unlikely to be adopted.}, language = {en} } @article{MeiSiebertXuetal.2022, author = {Mei, Shilin and Siebert, Andreas and Xu, Yaolin and Quan, Ting and Garcia-Diez, Raul and B{\"a}r, Marcus and H{\"a}rtel, Paul and Abendroth, Thomas and D{\"o}rfler, Susanne and Kaskel, Stefan and Lu, Yan}, title = {Large-Scale Synthesis of Nanostructured Carbon-Ti4O7 Hollow Particles as Efficient Sulfur Host Materials for Multilayer Lithium-Sulfur Pouch Cells}, series = {Batteries \& supercaps}, volume = {5}, journal = {Batteries \& supercaps}, number = {6}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {2566-6223}, doi = {10.1002/batt.202100398}, pages = {11}, year = {2022}, abstract = {Applications of advanced cathode materials with well-designed chemical components and/or optimized nanostructures promoting the sulfur redox kinetics and suppressing the shuttle effect of polysulfides are highly valued. However, in the case of actual lithium-sulfur (Li-S) batteries under practical working conditions, one long-term obstacle still exists, which is mainly due to the difficulties in massive synthesis of such nanomaterials with low cost and ease of control on the nanostructure. Herein, we develop a facile synthesis of carbon coated Ti4O7 hollow nanoparticles (Ti4O7) using spherical polymer electrolyte brush as soft template, which is scalable via utilizing a minipilot reactor. The C Ti4O7 hollow nanoparticles provide strong chemical adsorption to polysulfides through the large polar surface and additional physical confinement by rich micro- \& mesopores and have successfully been employed as an efficient sulfur host for multilayer pouch cells. Besides, the sluggish kinetics of the sulfur and lithium sulfide redox mechanism can be improved by the highly conductive Ti4O7 via catalyzation of the conversion of polysulfides. Consequently, the C-Ti4O7 based pouch cell endows a high discharge capacity of 1003 mAhg(-1) at 0.05 C, a high-capacity retention of 83.7\% after 100 cycles at 0.1 C, and a high Coulombic efficiency of 97.5\% at the 100th cycle. This work proposes an effective approach to transfer the synthesis of hollow Ti4O7 nanoparticles from lab- to large-scale production, paving the way to explore a wide range of advanced nanomaterials for multilayer Li-S pouch cells.}, language = {en} } @article{LepreHeskeNowakowskietal.2022, author = {Lepre, Enrico and Heske, Julian and Nowakowski, Michal and Scoppola, Ernesto and Zizak, Ivo and Heil, Tobias and K{\"u}hne, Thomas D. and Antonietti, Markus and Lopez-Salas, Nieves and Albero, Josep}, title = {Ni-based electrocatalysts for unconventional CO2 reduction reaction to formic acid}, series = {Nano energy}, volume = {97}, journal = {Nano energy}, publisher = {Elsevier}, address = {Amsterdam}, issn = {2211-2855}, doi = {10.1016/j.nanoen.2022.107191}, pages = {12}, year = {2022}, abstract = {Electrochemical reduction stands as an alternative to revalorize CO2. Among the different alternatives, Ni single atoms supported on carbonaceous materials are an appealing catalytic solution due to the low cost and versatility of the support and the optimal usage of Ni and its predicted selectivity and efficiency (ca. 100\% towards CO). Herein, we have used noble carbonaceous support derived from cytosine to load Ni subnanometric sites. The large heteroatom content of the support allows the stabilization of up to 11 wt\% of Ni without the formation of nanoparticles through a simple impregnation plus calcination approach, where nickel promotes the stabilization of C3NOx frameworks and the oxidative support promotes a high oxidation state of nickel. EXAFS analysis points at nickel single atoms or subnanometric clusters coordinated by oxygen in the material surface. Unlike the wellknown N-coordinated Ni single sites selectivity towards CO2 reduction, O-coordinated-Ni single sites (ca. 7 wt\% of Ni) reduced CO2 to CO, but subnanometric clusters (11 wt\% of Ni) foster the unprecedented formation of HCOOH with 27\% Faradaic efficiency at - 1.4 V. Larger Ni amounts ended up on the formation of NiO nanoparticles and almost 100\% selectivity towards hydrogen evolution.}, language = {en} }