@article{WangWangHuetal.2015, author = {Wang, Xuebin and Wang, Xiaoli and Hu, Jing and Wang, Zhaoya and Pimpalpalle, Tukaram M. and Linker, Torsten and Yin, Jian}, title = {Study on the Synthesis of Novel Sugar Amino Acids}, series = {Acta chimica Sinica = Huaxue-xuebao}, volume = {73}, journal = {Acta chimica Sinica = Huaxue-xuebao}, number = {7}, publisher = {Science China Press}, address = {Beijing}, issn = {0567-7351}, doi = {10.6023/A15030205}, pages = {699 -- 704}, year = {2015}, abstract = {Sugar amino acids (SAAs) are carbohydrate derivatives bearing both amino and carboxylic acid functional groups. SAAs represent an important class of multifunctional building blocks, which are amenable to serve as glycomimetics or peptidomimetics with well-defined structures and useful properties. Because SAAs exist in nature in many forms with various biological activities, recently, many unnatural SAAs, as the demand for finding new molecules to discover new drugs and new materials, have been designed and synthesized by a number of research groups. In this paper, we have developed a convenient method for the synthesis of novel SAAs gluco-7 and galacto-7 for the first time. The structure of gluco-7 was similar to the natural SAA glucosaminuronic acid that was a component of many typical bacterial cell walls and could be used for the preparation of type D flu vaccine; while galacto-7 was similar to the natural SAA galactosaminuronic acid that was one of bacterial Vi-antigen components of Escherichia coli. Starting from unexpensive and commercially available 3,4,6-tri-O-acetyl-D-glucal and 3,4,6-tri-O-acetyl-D-galactal, two novel SAAs gluco-7 and galacto-7 were achieved in the linear 6 steps with 34\% overall yield and 19\% overall yield, respectively. The key reactions included radical addition, decarboxylation, iodine generation reaction, azide reaction and reductive amination reaction. The crucial step was the synthesis of the target compound gluco-7 from gluco-6. By using method A, the target compound gluco-7 was obtained in 4 steps with 63\% overall yield. To optimize the transformation from gluco-6 to gluco-7, method B was developed to generate gluco-7 by using one-pot reaction successfully with 76\% yield only in one step. It proved that method B was superior to method A with shorter steps and higher yields. All the new compounds were characterized by IR, H-1 NMR, C-13 NMR and HRMS data. Study on the synthesis and biological evaluation of linear and cyclic oligomers derived from gluco-7 and galacto-7 are currently in progress.}, language = {zh} } @article{TschierschBanerjiRemus2021, author = {Tschiersch, Anja and Banerji, Amitabh and Remus, Ludger}, title = {Thymolblau - schulische Synthese \& AR-gest{\"u}tzte Lernmaterialien}, series = {Chemie konkret : CHEMKON ; Forum f{\"u}r Unterricht und Didaktik}, volume = {28}, journal = {Chemie konkret : CHEMKON ; Forum f{\"u}r Unterricht und Didaktik}, number = {6}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {0944-5846}, doi = {10.1002/ckon.202100011}, pages = {266 -- 269}, year = {2021}, abstract = {This article presents the synthesis of thymol blue as a student experiment together with suitable augmented reality (AR) learning materials. In addition, the theoretical background on the synthesis of thymol blue and its pH-dependent structure-property relationship is discussed with regards to recent findings. Furthermore, experiences with the experiment in school and university lab-trainings as well as in teacher trainings are reported.}, language = {de} } @article{HerfurthVollBulleretal.2012, author = {Herfurth, Christoph and Voll, Dominik and Buller, Jens and Weiss, Jan and Barner-Kowollik, Christopher and Laschewsky, Andr{\´e}}, title = {Radical addition fragmentation chain transfer (RAFT) polymerization of ferrocenyl (meth)acrylates}, series = {Journal of polymer science : A, Polymer chemistry}, volume = {50}, journal = {Journal of polymer science : A, Polymer chemistry}, number = {1}, publisher = {Wiley-Blackwell}, address = {Malden}, issn = {0887-624X}, doi = {10.1002/pola.24994}, pages = {108 -- 118}, year = {2012}, abstract = {We report on the controlled free radical homopolymerization of 1-ferrocenylethyl acrylate as well as of three new ferrocene bearing monomers, namely 4-ferrocenylbutyl acrylate, 2-ferrocenylamido-2-methylpropyl acrylate, and 4-ferrocenylbutyl methacrylate, by the RAFT technique. For comparison, the latter monomer was polymerized using ATRP, too. The ferrocene containing monomers were found to be less reactive than their analogues free of ferrocene. The reasons for the low polymerizability are not entirely clear. As the addition of free ferrocene to the reaction mixture did not notably affect the polymerizations, sterical hindrance by the bulky ferrocene moiety fixed on the monomers seems to be the most probable explanation. Molar masses found for 1-ferrocenylethyl acrylate did not exceed 10,000 g mol(-1), while for 4-ferrocenylbutyl (meth) acrylate molar masses of 15,000 g mol(-1) could be obtained. With PDIs as low as 1.3 in RAFT polymerization of the monomers, good control over the polymerization was achieved.}, language = {en} } @article{GuptaPathakShrivastav2022, author = {Gupta, Banshi D. and Pathak, Anisha and Shrivastav, Anand}, title = {Optical Biomedical Diagnostics Using Lab-on-Fiber Technology}, series = {Photonics : open access journal}, volume = {9}, journal = {Photonics : open access journal}, number = {2}, publisher = {MDPI}, address = {Basel}, issn = {2304-6732}, doi = {10.3390/photonics9020086}, pages = {40}, year = {2022}, abstract = {Point-of-care and in-vivo bio-diagnostic tools are the current need for the present critical scenarios in the healthcare industry. The past few decades have seen a surge in research activities related to solving the challenges associated with precise on-site bio-sensing. Cutting-edge fiber optic technology enables the interaction of light with functionalized fiber surfaces at remote locations to develop a novel, miniaturized and cost-effective lab on fiber technology for bio-sensing applications. The recent remarkable developments in the field of nanotechnology provide innumerable functionalization methodologies to develop selective bio-recognition elements for label free biosensors. These exceptional methods may be easily integrated with fiber surfaces to provide highly selective light-matter interaction depending on various transduction mechanisms. In the present review, an overview of optical fiber-based biosensors has been provided with focus on physical principles used, along with the functionalization protocols for the detection of various biological analytes to diagnose the disease. The design and performance of these biosensors in terms of operating range, selectivity, response time and limit of detection have been discussed. In the concluding remarks, the challenges associated with these biosensors and the improvement required to develop handheld devices to enable direct target detection have been highlighted.}, language = {en} } @article{HildebrandLaschewskyZehm2014, author = {Hildebrand, Viet and Laschewsky, Andr{\´e} and Zehm, Daniel}, title = {On the hydrophilicity of polyzwitterion poly (N, N-dimethyl-N(3-(methacrylamido)propyl)ammoniopropane sulfonate) in water, deuterated water, and aqueous salt solutions}, series = {Journal of biomaterials science : Polymer edition}, volume = {25}, journal = {Journal of biomaterials science : Polymer edition}, number = {14-15}, publisher = {Routledge, Taylor \& Francis Group}, address = {Abingdon}, issn = {0920-5063}, doi = {10.1080/09205063.2014.939918}, pages = {1602 -- 1618}, year = {2014}, language = {en} } @article{Linker2020, author = {Linker, Torsten}, title = {Addition of Heteroatom Radicals to endo-Glycals}, series = {Chemistry}, volume = {2}, journal = {Chemistry}, number = {1}, publisher = {MDPI}, address = {Basel}, issn = {2624-8549}, doi = {10.3390/chemistry2010008}, pages = {80 -- 92}, year = {2020}, abstract = {Radical reactions have found many applications in carbohydrate chemistry, especially in the construction of carbon-carbon bonds. The formation of carbon-heteroatom bonds has been less intensively studied. This mini-review will summarize the efforts to add heteroatom radicals to unsaturated carbohydrates like endo-glycals. Starting from early examples, developed more than 50 years ago, the importance of such reactions for carbohydrate chemistry and recent applications will be discussed. After a short introduction, the mini-review is divided in sub-chapters according to the heteroatoms halogen, nitrogen, phosphorus, and sulfur. The mechanisms of radical generation by chemical or photochemical processes and the subsequent reactions of the radicals at the 1-position will be discussed. This mini-review cannot cover all aspects of heteroatom-centered radicals in carbohydrate chemistry, but should provide an overview of the various strategies and future perspectives}, language = {en} }