@article{AllanWeisserFischeretal.2013, author = {Allan, Eric and Weisser, Wolfgang W. and Fischer, Markus and Schulze, Ernst-Detlef and Weigelt, Alexandra and Roscher, Christiane and Baade, Jussi and Barnard, Romain L. and Bessler, Holger and Buchmann, Nina and Ebeling, Anne and Eisenhauer, Nico and Engels, Christof and Fergus, Alexander J. F. and Gleixner, Gerd and Gubsch, Marlen and Halle, Stefan and Klein, Alexandra Maria and Kertscher, Ilona and Kuu, Annely and Lange, Markus and Le Roux, Xavier and Meyer, Sebastian T. and Migunova, Varvara D. and Milcu, Alexandru and Niklaus, Pascal A. and Oelmann, Yvonne and Pasalic, Esther and Petermann, Jana S. and Poly, Franck and Rottstock, Tanja and Sabais, Alexander C. W. and Scherber, Christoph and Scherer-Lorenzen, Michael and Scheu, Stefan and Steinbeiss, Sibylle and Schwichtenberg, Guido and Temperton, Vicky and Tscharntke, Teja and Voigt, Winfried and Wilcke, Wolfgang and Wirth, Christian and Schmid, Bernhard}, title = {A comparison of the strength of biodiversity effects across multiple functions}, series = {Oecologia}, volume = {173}, journal = {Oecologia}, number = {1}, publisher = {Springer}, address = {New York}, issn = {0029-8549}, doi = {10.1007/s00442-012-2589-0}, pages = {223 -- 237}, year = {2013}, abstract = {In order to predict which ecosystem functions are most at risk from biodiversity loss, meta-analyses have generalised results from biodiversity experiments over different sites and ecosystem types. In contrast, comparing the strength of biodiversity effects across a large number of ecosystem processes measured in a single experiment permits more direct comparisons. Here, we present an analysis of 418 separate measures of 38 ecosystem processes. Overall, 45 \% of processes were significantly affected by plant species richness, suggesting that, while diversity affects a large number of processes not all respond to biodiversity. We therefore compared the strength of plant diversity effects between different categories of ecosystem processes, grouping processes according to the year of measurement, their biogeochemical cycle, trophic level and compartment (above- or belowground) and according to whether they were measures of biodiversity or other ecosystem processes, biotic or abiotic and static or dynamic. Overall, and for several individual processes, we found that biodiversity effects became stronger over time. Measures of the carbon cycle were also affected more strongly by plant species richness than were the measures associated with the nitrogen cycle. Further, we found greater plant species richness effects on measures of biodiversity than on other processes. The differential effects of plant diversity on the various types of ecosystem processes indicate that future research and political effort should shift from a general debate about whether biodiversity loss impairs ecosystem functions to focussing on the specific functions of interest and ways to preserve them individually or in combination.}, language = {en} } @article{AndresGohlkeBroekeretal.2013, author = {Andres, Dorothee and Gohlke, Ulrich and Br{\"o}ker, Nina Kristin and Schulze, Stefan and Rabsch, Wolfgang and Heinemann, Udo and Barbirz, Stefanie and Seckler, Robert}, title = {An essential serotype recognition pocket on phage P22 tailspike protein forces Salmonella enterica serovar Paratyphi A O-antigen fragments to bind as nonsolution conformers}, series = {Glycobiology}, volume = {23}, journal = {Glycobiology}, number = {4}, publisher = {Oxford Univ. Press}, address = {Cary}, issn = {0959-6658}, doi = {10.1093/glycob/cws224}, pages = {486 -- 494}, year = {2013}, abstract = {Bacteriophage P22 recognizes O-antigen polysaccharides of Salmonella enterica subsp. enterica (S.) with its tailspike protein (TSP). In the serovars S. Typhimurium, S. Enteritidis, and S. Paratyphi A, the tetrasaccharide repeat units of the respective O-antigens consist of an identical main chain trisaccharide but different 3,6-dideoxyhexose substituents. Here, the epimers abequose, tyvelose and paratose determine the specific serotype. P22 TSP recognizes O-antigen octasaccharides in an extended binding site with a single 3,6-dideoxyhexose binding pocket. We have isolated S. Paratyphi A octasaccharides which were not available previously and determined the crystal structure of their complex with P22 TSP. We discuss our data together with crystal structures of complexes with S. Typhimurium and S. Enteritidis octasaccharides determined earlier. Isothermal titration calorimetry showed that S. Paratyphi A octasaccharide binds P22 TSP less tightly, with a difference in binding free energy of similar to 7 kJ mol(-1) at 20 degrees C compared with S. Typhimurium and S. Enteritidis octasaccharides. Individual protein-carbohydrate contacts were probed by amino acid replacements showing that the dideoxyhexose pocket contributes to binding of all three serotypes. However, S. Paratyphi A octasaccharides bind in a conformation with an energetically unfavorable phi/epsilon glycosidic bond angle combination. In contrast, octasaccharides from the other serotypes bind as solution-like conformers. Two water molecules are conserved in all P22 TSP complexes with octasaccharides of different serotypes. They line the dideoxyhexose binding pocket and force the S. Paratyphi A octasaccharides to bind as nonsolution conformers. This emphasizes the role of solvent as part of carbohydrate binding sites.}, language = {en} } @article{AttermeyerPremkeHornicketal.2013, author = {Attermeyer, Katrin and Premke, Katrin and Hornick, Thomas and Hilt, Sabine and Grossart, Hans-Peter}, title = {Ecosystem-level studies of terrestrial carbon reveal contrasting bacterial metabolism in different aquatic habitats}, series = {Ecology : a publication of the Ecological Society of America}, volume = {94}, journal = {Ecology : a publication of the Ecological Society of America}, number = {12}, publisher = {Wiley}, address = {Washington}, issn = {0012-9658}, doi = {10.1890/13-0420.1}, pages = {2754 -- 2766}, year = {2013}, abstract = {In aquatic systems, terrestrial dissolved organic matter (t-DOM) is known to stimulate bacterial activities in the water column, but simultaneous effects of autumnal leaf input on water column and sediment microbial dynamics in littoral zones of lakes remain largely unknown. The study's objective was to determine the effects of leaf litter on bacterial metabolism in the littoral water and sediment, and subsequently, the consequences for carbon cycling and food web dynamics. Therefore, in late fall, we simultaneously measured water and sediment bacterial metabolism in the littoral zone of a temperate shallow lake after adding terrestrial particulate organic matter (t-POM), namely, maize leaves. To better evaluate bacterial production (BP) and community respiration (CR) in sediments, we incubated sediment cores with maize leaves of different quality (nonleached and leached) under controlled laboratory conditions. Additionally, to quantify the incorporated leaf carbon into microbial biomass, we determined carbon isotopic ratios of fatty acids from sediment and leaf-associated microbes from a laboratory experiment using C-13-enriched beech leaves. The concentrations of dissolved organic carbon (DOC) increased significantly in the lake after the addition of maize leaves, accompanied by a significant increase in water BP. In contrast, sediment BP declined after an initial peak, showing no positive response to t-POM addition. Sediment BP and CR were also not stimulated by t-POM in the laboratory experiment, either in short-term or in long-term incubations, except for a short increase in CR after 18 hours. However, this increase might have reflected the metabolism of leaf-associated microorganisms. We conclude that the leached t-DOM is actively incorporated into microbial biomass in the water column but that the settling leached t-POM (t-POML) does not enter the food web via sediment bacteria. Consequently, t-POML is either buried in the sediment or introduced into the aquatic food web via microorganisms (bacteria and fungi) directly associated with t-POML and via benthic macroinvertebrates by shredding of t-POML. The latter pathway represents a benthic shortcut which efficiently transfers t-POML to higher trophic levels.}, language = {en} } @article{BadalyanNeumannSchaalLeimkuehleretal.2013, author = {Badalyan, Artavazd and Neumann-Schaal, Meina and Leimk{\"u}hler, Silke and Wollenberger, Ursula}, title = {A Biosensor for aromatic aldehydes comprising the mediator dependent PaoABC-Aldehyde oxidoreductase}, series = {Electroanalysis : an international journal devoted to fundamental and practical aspects of electroanalysis}, volume = {25}, journal = {Electroanalysis : an international journal devoted to fundamental and practical aspects of electroanalysis}, number = {1}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {1040-0397}, doi = {10.1002/elan.201200362}, pages = {101 -- 108}, year = {2013}, abstract = {A novel aldehyde oxidoreductase (PaoABC) from Escherichia coli was utilized for the development of an oxygen insensitive biosensor for benzaldehyde. The enzyme was immobilized in polyvinyl alcohol and currents were measured for aldehyde oxidation with different one and two electron mediators with the highest sensitivity for benzaldehyde in the presence of hexacyanoferrate(III). The benzaldehyde biosensor was optimized with respect to mediator concentration, enzyme loading and pH using potassium hexacyanoferrate(III). The linear measuring range is between 0.5200 mu M benzaldehyde. In correspondence with the substrate selectivity of the enzyme in solution the biosensor revealed a preference for aromatic aldehydes and less effective conversion of aliphatic aldehydes. The biosensor is oxygen independent, which is a particularly attractive feature for application. The biosensor can be applied to detect contaminations with benzaldehyde in solvents such as benzyl alcohol, where traces of benzaldehyde in benzyl alcohol down to 0.0042?\% can be detected.}, language = {en} } @article{BadalyanYogaSchwuchowetal.2013, author = {Badalyan, Artavazd and Yoga, Etienne Galemou and Schwuchow, Viola and P{\"o}ller, Sascha and Schuhmann, Wolfgang and Leimk{\"u}hler, Silke and Wollenberger, Ursula}, title = {Analysis of the interaction of the molybdenum hydroxylase PaoABC from Escherichia coli with positively and negatively charged metal complexes}, series = {Electrochemistry communications : an international journal dedicated to rapid publications in electrochemistry}, volume = {37}, journal = {Electrochemistry communications : an international journal dedicated to rapid publications in electrochemistry}, publisher = {Elsevier}, address = {New York}, issn = {1388-2481}, doi = {10.1016/j.elecom.2013.09.017}, pages = {5 -- 7}, year = {2013}, abstract = {An unusual behavior of the periplasmic aldehyde oxidoreductase (PaoABC) from Escherichia coil has been observed from electrochemical investigations of the enzyme catalyzed oxidation of aromatic aldehydes with different mediators under different conditions of ionic strength. The enzyme has similarity to other molybdoenzymes of the xanthine oxidase family, but the catalytic behavior turned out to be very different. Under steady state conditions the turnover of PaoABC is maximal at pH 4 for the negatively charged ferricyanide and at pH 9 for a positively charged osmium complex. Stopped-flow kinetic measurements of the catalytic half reaction showed that oxidation of benzaldehyde proceeds also above pH 7. Thus, benzaldehyde oxidation can proceed under acidic and basic conditions using this enzyme, a property which has not been described before for molybdenum hydroxylases. It is also suggested that the electron transfer with artificial electron acceptors and PaoABC can proceed at different protein sites and depends on the nature of the electron acceptor in addition to the ionic strength. (C) 2013 Elsevier B.V. All rights reserved.}, language = {en} } @article{BailleulGrimmChionetal.2013, author = {Bailleul, Frederic and Grimm, Volker and Chion, Clement and Hammill, Mike}, title = {Modeling implications of food resource aggregation on animal migration phenology}, series = {Ecology and evolution}, volume = {3}, journal = {Ecology and evolution}, number = {8}, publisher = {Wiley-Blackwell}, address = {Hoboken}, issn = {2045-7758}, doi = {10.1002/ece3.656}, pages = {2535 -- 2546}, year = {2013}, abstract = {The distribution of poikilotherms is determined by the thermal structure of the marine environment that they are exposed to. Recent research has indicated that changes in migration phenology of beluga whales in the Arctic are triggered by changes in the thermal structure of the marine environment in their summering area. If sea temperatures reflect the spatial distribution of food resources, then changes in the thermal regime will affect how homogeneous or clumped food is distributed. We explore, by individual-based modelling, the hypothesis that changes in migration phenology are not necessarily or exclusively triggered by changes in food abundance, but also by changes in the spatial aggregation of food. We found that the level of food aggregation can significantly affect the relationship between the timing of the start of migration to the winter grounds and the total prey capture of individuals. Our approach strongly indicates that changes in the spatial distribution of food resources should be considered for understanding and quantitatively predicting changes in the phenology of animal migration.}, language = {en} } @article{BaselHarmsPrechtl2013, author = {Basel, Nicolai and Harms, Ute and Prechtl, Helmut}, title = {Analysis of students' arguments on evolutionary theory}, series = {Journal of biological education}, volume = {47}, journal = {Journal of biological education}, number = {4}, publisher = {Routledge, Taylor \& Francis Group}, address = {Abingdon}, issn = {0021-9266}, doi = {10.1080/00219266.2013.799078}, pages = {192 -- 199}, year = {2013}, abstract = {A qualitative exploratory study was conducted to reveal students' argumentation skills in the context of the topic of evolution. Transcripts from problem-centred interviews on secondary students' beliefs about evolutionary processes of adaptation were analysed using a content analysis approach. For this purpose two categorical systems were deductively developed: one addressing the complexity of students' arguments, the other focusing on students' use of argumentation schemes. Subsequently, the categorical systems were inductively elaborated upon the basis of the analysed material showing a satisfactory inter-rater reliability. Regarding the arguments' complexity, students produced mainly single claims or claims with a single justification consisting of either data or warrants. With regard to argumentation schemes students drew their arguments mainly using causal schemes, analogies, or illustrative examples. Results are discussed in light of possible implications for teaching evolutionary theory using classroom argumentation.}, language = {en} } @article{BauerSommerGaedke2013, author = {Bauer, Barbara and Sommer, Ulrich and Gaedke, Ursula}, title = {High predictability of spring phytoplankton biomass in mesocosms at the species, functional group and community level}, series = {Freshwater biology}, volume = {58}, journal = {Freshwater biology}, number = {3}, publisher = {Wiley-Blackwell}, address = {Hoboken}, issn = {0046-5070}, doi = {10.1111/j.1365-2427.2012.02780.x}, pages = {588 -- 596}, year = {2013}, abstract = {1. Models aim to predict phytoplankton dynamics based on observed initial conditions and a set of equations and parameters. However, our knowledge about initial conditions in nature is never perfect. Thus, if phytoplankton dynamics are sensitive to small variations in initial conditions, they are difficult to predict. 2. We used time-series data from indoor mesocosm experiments with natural phyto- and zooplankton communities to quantify the extent to which small initial differences in the species, functional group and community biomass in parallel treatments were amplified or buffered over time. We compared the differences in dynamics between replicates and among all mesocosms of 1year. 3. Temperature-sensitive grazing during the exponential growth phase of phytoplankton caused divergence. In contrast, negative density dependence caused convergence. 4. Mean differences in biomass between replicates were similar for all hierarchical levels. This indicates that differences in their initial conditions were amplified to the same extent. Even though large differences in biomass occasionally occurred between replicates for a short time, dynamics returned to the same path at all hierarchical levels. This suggests that internal feedback mechanisms make the spring development of phytoplankton highly predictable.}, language = {en} } @article{BaumannBauer2013, author = {Baumann, Otto and Bauer, Alexandra}, title = {Development of apical membrane organization and V-ATPase regulation in blowfly salivary glands}, series = {The journal of experimental biology}, volume = {216}, journal = {The journal of experimental biology}, number = {7}, publisher = {Company of Biologists Limited}, address = {Cambridge}, issn = {0022-0949}, doi = {10.1242/jeb.077420}, pages = {1225 -- 1234}, year = {2013}, abstract = {Secretory cells in blowfly salivary gland are specialized via morphological and physiological attributes in order to serve their main function, i.e. the transport of solutes at a high rate in response to a hormonal stimulus, namely serotonin (5-HT). This study examines the way that 5-HT-insensitive precursor cells differentiate into morphologically complex 5-HT-responsive secretory cells. By means of immunofluorescence microscopy, immunoblotting and measurements of the transepithelial potential changes, we show the following. (1) The apical membrane of the secretory cells becomes organized into an elaborate system of canaliculi and is folded into pleats during the last pupal day and the first day of adulthood. (2) The structural reorganization of the apical membrane is accompanied by an enrichment of actin filaments and phosphorylated ERM protein (phospho-moesin) at this membrane domain and by the deployment of the membrane-integral part of vacuolar-type H+-ATPase (V-ATPase). These findings suggest a role for phospho-moesin, a linker between actin filaments and membrane components, in apical membrane morphogenesis. (3) The assembly and activation of V-ATPase can be induced immediately after eclosion by way of 8-CPT-cAMP, a membrane-permeant cAMP analogue. (4) 5-HT, however, produces the assembly and activation of V-ATPase only in flies aged for at least 2 h after eclosion, indicating that, at eclosion, the 5-HT receptor/adenylyl cyclase/cAMP signalling pathway is inoperative upstream of cAMP. (5) 5-HT activates both the Ca2+ signalling pathway and the cAMP signalling cascade in fully differentiated secretory cells. However, the functionality of these signalling cascades does not seem to be established in a tightly coordinated manner during cell differentation.}, language = {en} } @article{BaumannArndtMueller2013, author = {Baumann, Tobias and Arndt, Katja Maren and M{\"u}ller, Kristian M.}, title = {Directional cloning of DNA fragments using deoxyinosine-containing oligonucleotides and endonuclease V}, series = {BMC biotechnology}, volume = {13}, journal = {BMC biotechnology}, number = {10}, publisher = {BioMed Central}, address = {London}, issn = {1472-6750}, doi = {10.1186/1472-6750-13-81}, pages = {11}, year = {2013}, abstract = {Background: DNA fragments carrying internal recognition sites for the restriction endonucleases intended for cloning into a target plasmid pose a challenge for conventional cloning. Results: A method for directional insertion of DNA fragments into plasmid vectors has been developed. The target sequence is amplified from a template DNA sample by PCR using two oligonucleotides each containing a single deoxyinosine base at the third position from the 5' end. Treatment of such PCR products with endonuclease V generates 3' protruding ends suitable for ligation with vector fragments created by conventional restriction endonuclease reactions. Conclusions: The developed approach generates terminal cohesive ends without the use of Type II restriction endonucleases, and is thus independent from the DNA sequence. Due to PCR amplification, minimal amounts of template DNA are required. Using the robust Taq enzyme or a proofreading Pfu DNA polymerase mutant, the method is applicable to a broad range of insert sequences. Appropriate primer design enables direct incorporation of terminal DNA sequence modifications such as tag addition, insertions, deletions and mutations into the cloning strategy. Further, the restriction sites of the target plasmid can be either retained or removed.}, language = {en} } @article{BeninaObataMehterovetal.2013, author = {Benina, Maria and Obata, Toshihiro and Mehterov, Nikolay and Ivanov, Ivan and Petrov, Veselin and Toneva, Valentina and Fernie, Alisdair R. and Gechev, Tsanko S.}, title = {Comparative metabolic profiling of Haberlea rhodopensis, Thellungiella halophyla, and Arabidopsis thaliana exposed to low temperature}, series = {Frontiers in plant science}, volume = {4}, journal = {Frontiers in plant science}, number = {1}, publisher = {Frontiers Research Foundation}, address = {Lausanne}, issn = {1664-462X}, doi = {10.3389/fpls.2013.00499}, pages = {11}, year = {2013}, abstract = {Haberlea rhodopensis is a resurrection species with extreme resistance to drought stress and desiccation but also with ability to withstand low temperatures and freezing stress. In order to identify biochemical strategies which contribute to Haberlea's remarkable stress tolerance, the metabolic reconfiguration of H. rhodopensis during low temperature (4 degrees C) and subsequent return to optimal temperatures (21 degrees C) was investigated and compared with that of the stress tolerant Thellungiella halophyla and the stress sensitive Arabidopsis thaliana. Metabolic analysis by GC-MS revealed intrinsic differences in the metabolite levels of the three species even at 21 degrees C. H. rhodopensis had significantly more raffinose, melibiose, trehalose, rhamnose, myo-inositol, sorbitol, galactinol, erythronate, threonate, 2-oxoglutarate, citrate, and glycerol than the other two species. A. thaliana had the highest levels of putrescine and fumarate, while T halophila had much higher levels of several amino acids, including alanine, asparagine, beta-alanine, histidine, isoleucine, phenylalanine, serine, threonine, and valine. In addition, the three species responded differently to the low temperature treatment and the subsequent recovery, especially with regard to the sugar metabolism. Chilling induced accumulation of maltose in H. rhodopensis and raffinose in A. thaliana but the raffinose levels in low temperature exposed Arabidopsis were still much lower than these in unstressed Haberlea. While all species accumulated sucrose during chilling, that accumulation was transient in H. rhodopensis and A. thaliana but sustained in T halophila after the return to optimal temperature. Thus, Haberlea's metabolome appeared primed for chilling stress but the low temperature acclimation induced additional stress-protective mechanisms. A diverse array of sugars, organic acids, and polyols constitute Haberlea's main metabolic defence mechanisms against chilling, while accumulation of amino acids and amino acid derivatives contribute to the low temperature acclimation in Arabidopsis and Thellungiella. Collectively, these results show inherent differences in the metabolomes under the ambient temperature and the strategies to respond to low temperature in the three species.}, language = {en} } @article{BenteleSaffertRauscheretal.2013, author = {Bentele, Kajetan and Saffert, Paul and Rauscher, Robert and Ignatova, Zoya and Bluethgen, Nils}, title = {Efficient translation initiation dictates codon usage at gene start}, series = {Molecular systems biology}, volume = {9}, journal = {Molecular systems biology}, number = {6}, publisher = {Nature Publ. Group}, address = {New York}, issn = {1744-4292}, doi = {10.1038/msb.2013.32}, pages = {10}, year = {2013}, abstract = {The genetic code is degenerate; thus, protein evolution does not uniquely determine the coding sequence. One of the puzzles in evolutionary genetics is therefore to uncover evolutionary driving forces that result in specific codon choice. In many bacteria, the first 5-10 codons of protein-coding genes are often codons that are less frequently used in the rest of the genome, an effect that has been argued to arise from selection for slowed early elongation to reduce ribosome traffic jams. However, genome analysis across many species has demonstrated that the region shows reduced mRNA folding consistent with pressure for efficient translation initiation. This raises the possibility that unusual codon usage is a side effect of selection for reduced mRNA structure. Here we discriminate between these two competing hypotheses, and show that in bacteria selection favours codons that reduce mRNA folding around the translation start, regardless of whether these codons are frequent or rare. Experiments confirm that primarily mRNA structure, and not codon usage, at the beginning of genes determines the translation rate.}, language = {en} } @article{BhabakKleuserHuwileretal.2013, author = {Bhabak, Krishna P. and Kleuser, Burkhard and Huwiler, Andrea and Arenz, Christoph}, title = {Effective inhibition of acid and neutral ceramidases by novel B-13 and LCL-464 analogues}, series = {Bioorganic \& medicinal chemistry : a Tetrahedron publication for the rapid dissemination of full original research papers and critical reviews on biomolecular chemistry, medicinal chemistry and related disciplines}, volume = {21}, journal = {Bioorganic \& medicinal chemistry : a Tetrahedron publication for the rapid dissemination of full original research papers and critical reviews on biomolecular chemistry, medicinal chemistry and related disciplines}, number = {4}, publisher = {Elsevier}, address = {Oxford}, issn = {0968-0896}, doi = {10.1016/j.bmc.2012.12.014}, pages = {874 -- 882}, year = {2013}, abstract = {Induction of apoptosis mediated by the inhibition of ceramidases has been shown to enhance the efficacy of conventional chemotherapy in several cancer models. Among the inhibitors of ceramidases reported in the literature, B-13 is considered as a lead compound having good in vitro potency towards acid ceramidase. Furthermore, owing to the poor activity of B-13 on lysosoamal acid ceramidase in living cells, LCL-464 a modified derivative of B-13 containing a basic omega-amino group at the fatty acid was reported to have higher potency towards lysosomal acid ceramidase in living cells. In a search for more potent inhibitors of ceramidases, we have designed a series of compounds with structural modifications of B-13 and LCL-464. In this study, we show that the efficacy of B-13 in vitro as well as in intact cells can be enhanced by suitable modification of functional groups. Furthermore, a detailed SAR investigation on LCL-464 analogues revealed novel promising inhibitors of aCDase and nCDase. In cell culture studies using the breast cancer cell line MDA-MB-231, some of the newly developed compounds elevated endogenous ceramide levels and in parallel, also induced apoptotic cell death. In summary, this study shows that structural modification of the known ceramidase inhibitors B-13 and LCL-464 generates more potent ceramidase inhibitors that are active in intact cells and not only elevates the cellular ceramide levels, but also enhances cell death.}, language = {en} } @article{BochMuellerPratiletal.2013, author = {Boch, Steffen and M{\"u}ller, J{\"o}rg and Pratil, Daniel and Blaser, Stefan and Fischer, Markus}, title = {Up in the tree - the overlooked richness of bryophytes and lichens in Tree Crowns}, series = {PLoS one}, volume = {8}, journal = {PLoS one}, number = {12}, publisher = {PLoS}, address = {San Fransisco}, issn = {1932-6203}, doi = {10.1371/journal.pone.0084913}, pages = {8}, year = {2013}, abstract = {Assessing diversity is among the major tasks in ecology and conservation science. In ecological and conservation studies, epiphytic cryptogams are usually sampled up to accessible heights in forests. Thus, their diversity, especially of canopy specialists, likely is underestimated. If the proportion of those species differs among forest types, plot-based diversity assessments are biased and may result in misleading conservation recommendations. We sampled bryophytes and lichens in 30 forest plots of 20 m x 20 m in three German regions, considering all substrates, and including epiphytic litter fall. First, the sampling of epiphytic species was restricted to the lower 2 m of trees and shrubs. Then, on one representative tree per plot, we additionally recorded epiphytic species in the crown, using tree climbing techniques. Per tree, on average 54\% of lichen and 20\% of bryophyte species were overlooked if the crown was not been included. After sampling all substrates per plot, including the bark of all shrubs and trees, still 38\% of the lichen and 4\% of the bryophyte species were overlooked if the tree crown of the sampled tree was not included. The number of overlooked lichen species varied strongly among regions. Furthermore, the number of overlooked bryophyte and lichen species per plot was higher in European beech than in coniferous stands and increased with increasing diameter at breast height of the sampled tree. Thus, our results indicate a bias of comparative studies which might have led to misleading conservation recommendations of plot-based diversity assessments.}, language = {en} } @article{BochPratiMuelleretal.2013, author = {Boch, Steffen and Prati, Daniel and M{\"u}ller, J{\"o}rg and Socher, Stephanie and Baumbach, Henryk and Buscot, Francois and Gockel, Sonja and Hemp, Andreas and Hessenm{\"o}ller, Dominik and Kalko, Elisabeth K. V. and Linsenmair, K. Eduard and Pfeiffer, Simone and Pommer, Ulf and Sch{\"o}ning, Ingo and Schulze, Ernst-Detlef and Seilwinder, Claudia and Weisser, Wolfgang W. and Wells, Konstans and Fischer, Markus}, title = {High plant species richness indicates management-related disturbances rather than the conservation status of forests}, series = {Basic and applied ecology : Journal of the Gesellschaft f{\"u}r {\"O}kologie}, volume = {14}, journal = {Basic and applied ecology : Journal of the Gesellschaft f{\"u}r {\"O}kologie}, number = {6}, publisher = {Elsevier}, address = {Jena}, issn = {1439-1791}, doi = {10.1016/j.baae.2013.06.001}, pages = {496 -- 505}, year = {2013}, abstract = {There is a wealth of smaller-scale studies on the effects of forest management on plant diversity. However, studies comparing plant species diversity in forests with different management types and intensity, extending over different regions and forest stages, and including detailed information on site conditions are missing. We studied vascular plants on 1500 20 m x 20 m forest plots in three regions of Germany (Schwabische Alb, Hainich-Dun, Schorfheide-Chorin). In all regions, our study plots comprised different management types (unmanaged, selection cutting, deciduous and coniferous age-class forests, which resulted from clear cutting or shelterwood logging), various stand ages, site conditions, and levels of management-related disturbances. We analyzed how overall richness and richness of different plant functional groups (trees, shrubs, herbs, herbaceous species typically growing in forests and herbaceous light-demanding species) responded to the different management types. On average, plant species richness was 13\% higher in age-class than in unmanaged forests, and did not differ between deciduous age-class and selection forests. In age-class forests of the Schwabische Alb and Hainich-Dun, coniferous stands had higher species richness than deciduous stands. Among age-class forests, older stands with large quantities of standing biomass were slightly poorer in shrub and light-demanding herb species than younger stands. Among deciduous forests, the richness of herbaceous forest species was generally lower in unmanaged than in managed forests, and it was even 20\% lower in unmanaged than in selection forests in Hainich-Dun. Overall, these findings show that disturbances by management generally increase plant species richness. This suggests that total plant species richness is not suited as an indicator for the conservation status of forests, but rather indicates disturbances.}, language = {en} } @article{BosserdtGajovicEichelmanScheller2013, author = {Bosserdt, Maria and Gajovic-Eichelman, Nenad and Scheller, Frieder W.}, title = {Modulation of direct electron transfer of cytochrome c by use of a molecularly imprinted thin film}, series = {Analytical \& bioanalytical chemistry}, volume = {405}, journal = {Analytical \& bioanalytical chemistry}, number = {20}, publisher = {Springer}, address = {Heidelberg}, issn = {1618-2642}, doi = {10.1007/s00216-013-7009-8}, pages = {6437 -- 6444}, year = {2013}, abstract = {We describe the preparation of a molecularly imprinted polymer film (MIP) on top of a self-assembled monolayer (SAM) of mercaptoundecanoic acid (MUA) on gold, where the template cytochrome c (cyt c) participates in direct electron transfer (DET) with the underlying electrode. To enable DET, a non-conductive polymer film is electrodeposited from an aqueous solution of scopoletin and cyt c on to the surface of a gold electrode previously modified with MUA. The electroactive surface concentration of cyt c was 0.5 pmol cm(-2). In the absence of the MUA layer, no cyt c DET was observed and the pseudo-peroxidatic activity of the scopoletin-entrapped protein, assessed via oxidation of Ampliflu red in the presence of hydrogen peroxide, was only 30 \% of that for the MIP on MUA. This result indicates that electrostatic adsorption of cyt c by the MUA-SAM substantially increases the surface concentration of cyt c during the electrodeposition step, and is a prerequisite for the productive orientation required for DET. After template removal by treatment with sulfuric acid, rebinding of cyt c to the MUA-MIP-modified electrode occurred with an affinity constant of 100,000 mol(-1) L, a value three times higher than that determined by use of fluorescence titration for the interaction between scopoletin and cyt c in solution. The DET of cyt c in the presence of myoglobin, lysozyme, and bovine serum albumin (BSA) reveals that the MIP layer suppresses the effect of competing proteins.}, language = {en} } @article{BreitkopfSchlueterXuetal.2013, author = {Breitkopf, Hendrik and Schl{\"u}ter, P. M. and Xu, S. and Schiestl, Florian P. and Cozzolino, S. and Scopece, G.}, title = {Pollinator shifts between Ophrys sphegodes populations: might adaptation to different pollinators drive population divergence?}, series = {Journal of evolutionary biology}, volume = {26}, journal = {Journal of evolutionary biology}, number = {10}, publisher = {Wiley-Blackwell}, address = {Hoboken}, issn = {1010-061X}, doi = {10.1111/jeb.12216}, pages = {2197 -- 2208}, year = {2013}, abstract = {Local adaptation to different pollinators is considered one of the possible initial stages of ecological speciation as reproductive isolation is a by-product of the divergence in pollination systems. However, pollinator-mediated divergent selection will not necessarily result in complete reproductive isolation, because incipient speciation is often overcome by gene flow. We investigated the potential of pollinator shift in the sexually deceptive orchids Ophrys sphegodes and Ophrys exaltata and compared the levels of floral isolation vs. genetic distance among populations with contrasting predominant pollinators. We analysed floral hydrocarbons as a proxy for floral divergence between populations. Floral adoption of pollinators and their fidelity was tested using pollinator choice experiments. Interpopulation gene flow and population differentiation levels were estimated using AFLP markers. The Tyrrhenian O.sphegodes population preferentially attracted the pollinator bee Andrena bimaculata, whereas the Adriatic O.sphegodes population exclusively attracted A.nigroaenea. Significant differences in scent component proportions were identified in O.sphegodes populations that attracted different preferred pollinators. High interpopulation gene flow was detected, but populations were genetically structured at species level. The high interpopulation gene flow levels independent of preferred pollinators suggest that local adaptation to different pollinators has not (yet) generated detectable genome-wide separation. Alternatively, despite extensive gene flow, few genes underlying floral isolation remain differentiated as a consequence of divergent selection. Different pollination ecotypes in O.sphegodes might represent a local selective response imposed by temporal variation in a geographical mosaic of pollinators as a consequence of the frequent disturbance regimes typical of Ophrys habitats.}, language = {en} } @article{BrothersHiltAttermeyeretal.2013, author = {Brothers, Soren M. and Hilt, Sabine and Attermeyer, Katrin and Grossart, Hans-Peter and Kosten, Sarian and Lischke, Betty and Mehner, Thomas and Meyer, Nils and Scharnweber, Inga Kristin and K{\"o}hler, Jan}, title = {A regime shift from macrophyte to phytoplankton dominance enhances carbon burial in a shallow, eutrophic lake}, series = {Ecosphere : the magazine of the International Ecology University}, volume = {4}, journal = {Ecosphere : the magazine of the International Ecology University}, number = {11}, publisher = {Wiley}, address = {Washington}, issn = {2150-8925}, doi = {10.1890/ES13-00247.1}, pages = {17}, year = {2013}, abstract = {Ecological regime shifts and carbon cycling in aquatic systems have both been subject to increasing attention in recent years, yet the direct connection between these topics has remained poorly understood. A four-fold increase in sedimentation rates was observed within the past 50 years in a shallow eutrophic lake with no surface in-or outflows. This change coincided with an ecological regime shift involving the complete loss of submerged macrophytes, leading to a more turbid, phytoplankton-dominated state. To determine whether the increase in carbon (C) burial resulted from a comprehensive transformation of C cycling pathways in parallel to this regime shift, we compared the annual C balances (mass balance and ecosystem budget) of this turbid lake to a similar nearby lake with submerged macrophytes, a higher transparency, and similar nutrient concentrations. C balances indicated that roughly 80\% of the C input was permanently buried in the turbid lake sediments, compared to 40\% in the clearer macrophyte-dominated lake. This was due to a higher measured C burial efficiency in the turbid lake, which could be explained by lower benthic C mineralization rates. These lower mineralization rates were associated with a decrease in benthic oxygen availability coinciding with the loss of submerged macrophytes. In contrast to previous assumptions that a regime shift to phytoplankton dominance decreases lake heterotrophy by boosting whole-lake primary production, our results suggest that an equivalent net metabolic shift may also result from lower C mineralization rates in a shallow, turbid lake. The widespread occurrence of such shifts may thus fundamentally alter the role of shallow lakes in the global C cycle, away from channeling terrestrial C to the atmosphere and towards burying an increasing amount of C.}, language = {en} } @article{BrothersHiltMeyeretal.2013, author = {Brothers, Soren M. and Hilt, Sabine and Meyer, Stephanie and K{\"o}hler, Jan}, title = {Plant community structure determines primary productivity in shallow, eutrophic lakes}, series = {Freshwater biology}, volume = {58}, journal = {Freshwater biology}, number = {11}, publisher = {Wiley-Blackwell}, address = {Hoboken}, issn = {0046-5070}, doi = {10.1111/fwb.12207}, pages = {2264 -- 2276}, year = {2013}, abstract = {Regime shifts are commonly associated with the loss of submerged macrophytes in shallow lakes; yet, the effects of this on whole-lake primary productivity remain poorly understood. This study compares the annual gross primary production (GPP) of two shallow, eutrophic lakes with different plant community structures but similar nutrient concentrations. Daily GPP rates were substantially higher in the lake containing submerged macrophytes (58623gCm(-2)year(-1)) than in the lake featuring only phytoplankton and periphyton (40823gCm(-2)year(-1); P<0.0001). Comparing lake-centre diel oxygen curves to compartmental estimates of GPP confirmed that single-site oxygen curves may provide unreliable estimates of whole-lake GPP. The discrepancy between approaches was greatest in the macrophyte-dominated lake during the summer, with a high proportion of GPP occurring in the littoral zone. Our empirical results were used to construct a simple conceptual model relating GPP to nutrient availability for these alternative ecological regimes. This model predicted that lakes featuring submerged macrophytes may commonly support higher rates of GPP than phytoplankton-dominated lakes, but only within a moderate range of nutrient availability (total phosphorus ranging from 30 to 100gL(-1)) and with mean lake depths shallower than 3 or 4m. We conclude that shallow lakes with a submerged macrophyte-epiphyton complex may frequently support a higher annual primary production than comparable lakes that contain only phytoplankton and periphyton. We thus suggest that a regime shift involving the loss of submerged macrophytes may decrease the primary productivity of many lakes, with potential consequences for the entire food webs of these ecosystems.}, language = {en} } @article{BroekerGohlkeMuelleretal.2013, author = {Br{\"o}ker, Nina Kristin and Gohlke, Ulrich and M{\"u}ller, J{\"u}rgen J. and Uetrecht, Charlotte and Heinemann, Udo and Seckler, Robert and Barbirz, Stefanie}, title = {Single amino acid exchange in bacteriophage HK620 tailspike protein results in thousand-fold increase of its oligosaccharide affinity}, series = {Glycobiology}, volume = {23}, journal = {Glycobiology}, number = {1}, publisher = {Oxford Univ. Press}, address = {Cary}, issn = {0959-6658}, doi = {10.1093/glycob/cws126}, pages = {59 -- 68}, year = {2013}, abstract = {Bacteriophage HK620 recognizes and cleaves the O-antigen polysaccharide of Escherichia coli serogroup O18A1 with its tailspike protein (TSP). HK620TSP binds hexasaccharide fragments with low affinity, but single amino acid exchanges generated a set of high-affinity mutants with submicromolar dissociation constants. Isothermal titration calorimetry showed that only small amounts of heat were released upon complex formation via a large number of direct and solvent-mediated hydrogen bonds between carbohydrate and protein. At room temperature, association was both enthalpy- and entropy-driven emphasizing major solvent rearrangements upon complex formation. Crystal structure analysis showed identical protein and sugar conformers in the TSP complexes regardless of their hexasaccharide affinity. Only in one case, a TSP mutant bound a different hexasaccharide conformer. The extended sugar binding site could be dissected in two regions: first, a hydrophobic pocket at the reducing end with minor affinity contributions. Access to this site could be blocked by a single aspartate to asparagine exchange without major loss in hexasaccharide affinity. Second, a region where the specific exchange of glutamate for glutamine created a site for an additional water molecule. Side-chain rearrangements upon sugar binding led to desolvation and additional hydrogen bonding which define this region of the binding site as the high-affinity scaffold.}, language = {en} }