@article{DubovskayaTangGladyshevetal.2015, author = {Dubovskaya, Olga P. and Tang, Kam W. and Gladyshev, Michail I. and Kirillin, Georgiy and Buseva, Zhanna and Kasprzak, Peter and Tolomeev, Aleksandr P. and Grossart, Hans-Peter}, title = {Estimating In Situ Zooplankton Non-Predation Mortality in an Oligo-Mesotrophic Lake from Sediment Trap Data: Caveats and Reality Check}, series = {PLoS one}, volume = {10}, journal = {PLoS one}, number = {7}, publisher = {PLoS}, address = {San Fransisco}, issn = {1932-6203}, doi = {10.1371/journal.pone.0131431}, pages = {17}, year = {2015}, abstract = {Background Mortality is a main driver in zooplankton population biology but it is poorly constrained in models that describe zooplankton population dynamics, food web interactions and nutrient dynamics. Mortality due to non-predation factors is often ignored even though anecdotal evidence of non-predation mass mortality of zooplankton has been reported repeatedly. One way to estimate non-predation mortality rate is to measure the removal rate of carcasses, for which sinking is the primary removal mechanism especially in quiescent shallow water bodies. Objectives and Results We used sediment traps to quantify in situ carcass sinking velocity and non-predation mortality rate on eight consecutive days in 2013 for the cladoceran Bosmina longirostris in the oligo-mesotrophic Lake Stechlin; the outcomes were compared against estimates derived from in vitro carcass sinking velocity measurements and an empirical model correcting in vitro sinking velocity for turbulence resuspension and microbial decomposition of carcasses. Our results show that the latter two approaches produced unrealistically high mortality rates of 0.58-1.04 d(-1), whereas the sediment trap approach, when used properly, yielded a mortality rate estimate of 0.015 d(-1), which is more consistent with concurrent population abundance data and comparable to physiological death rate from the literature. Ecological implications Zooplankton carcasses may be exposed to water column microbes for days before entering the benthos; therefore, non-predation mortality affects not only zooplankton population dynamics but also microbial and benthic food webs. This would be particularly important for carbon and nitrogen cycles in systems where recurring mid-summer decline of zooplankton population due to non-predation mortality is observed.}, language = {en} } @article{LeDucRenaudKrishnanetal.2015, author = {Le Duc, Diana and Renaud, Gabriel and Krishnan, Arunkumar and Almen, Markus Sallman and Huynen, Leon and Prohaska, Sonja J. and Ongyerth, Matthias and Bitarello, Barbara D. and Schioth, Helgi B. and Hofreiter, Michael and Stadler, Peter F. and Pr{\"u}fer, Kay and Lambert, David and Kelso, Janet and Sch{\"o}neberg, Torsten}, title = {Kiwi genome provides insights into evolution of a nocturnal lifestyle}, series = {Genome biology : biology for the post-genomic era}, volume = {16}, journal = {Genome biology : biology for the post-genomic era}, publisher = {BioMed Central}, address = {London}, issn = {1465-6906}, doi = {10.1186/s13059-015-0711-4}, pages = {15}, year = {2015}, abstract = {Background: Kiwi, comprising five species from the genus Apteryx, are endangered, ground-dwelling bird species endemic to New Zealand. They are the smallest and only nocturnal representatives of the ratites. The timing of kiwi adaptation to a nocturnal niche and the genomic innovations, which shaped sensory systems and morphology to allow this adaptation, are not yet fully understood. Results: We sequenced and assembled the brown kiwi genome to 150-fold coverage and annotated the genome using kiwi transcript data and non-redundant protein information from multiple bird species. We identified evolutionary sequence changes that underlie adaptation to nocturnality and estimated the onset time of these adaptations. Several opsin genes involved in color vision are inactivated in the kiwi. We date this inactivation to the Oligocene epoch, likely after the arrival of the ancestor of modern kiwi in New Zealand. Genome comparisons between kiwi and representatives of ratites, Galloanserae, and Neoaves, including nocturnal and song birds, show diversification of kiwi's odorant receptors repertoire, which may reflect an increased reliance on olfaction rather than sight during foraging. Further, there is an enrichment of genes influencing mitochondrial function and energy expenditure among genes that are rapidly evolving specifically on the kiwi branch, which may also be linked to its nocturnal lifestyle. Conclusions: The genomic changes in kiwi vision and olfaction are consistent with changes that are hypothesized to occur during adaptation to nocturnal lifestyle in mammals. The kiwi genome provides a valuable genomic resource for future genome-wide comparative analyses to other extinct and extant diurnal ratites.}, language = {en} } @article{ReilImholtEccardetal.2015, author = {Reil, Daniela and Imholt, Christian and Eccard, Jana and Jacob, Jens}, title = {Beech Fructification and Bank Vole Population Dynamics - Combined Analyses of Promoters of Human Puumala Virus Infections in Germany}, series = {PLoS one}, volume = {10}, journal = {PLoS one}, number = {7}, publisher = {PLoS}, address = {San Fransisco}, issn = {1932-6203}, doi = {10.1371/journal.pone.0134124}, pages = {14}, year = {2015}, abstract = {The transmission of wildlife zoonoses to humans depends, amongst others, on complex interactions of host population ecology and pathogen dynamics within host populations. In Europe, the Puumala virus (PUUV) causes nephropathia epidemica in humans. In this study we investigated complex interrelations within the epidemic system of PUUV and its rodent host, the bank vole (Myodes glareolus). We suggest that beech fructification and bank vole abundance are both decisive factors affecting human PUUV infections. While rodent host dynamics are expected to be directly linked to human PUUV infections, beech fructification is a rather indirect predictor by serving as food source for PUUV rodent hosts. Furthermore, we examined the dependence of bank vole abundance on beech fructification. We analysed a 12-year (2001-2012) time series of the parameters: beech fructification (as food resource for the PUUV host), bank vole abundance and human incidences from 7 Federal States of Germany. For the first time, we could show the direct interrelation between these three parameters involved in human PUUV epidemics and we were able to demonstrate on a large scale that human PUUV infections are highly correlated with bank vole abundance in the present year, as well as beech fructification in the previous year. By using beech fructification and bank vole abundance as predictors in one model we significantly improved the degree of explanation of human PUUV incidence. Federal State was included as random factor because human PUUV incidence varies considerably among states. Surprisingly, the effect of rodent abundance on human PUUV infections is less strong compared to the indirect effect of beech fructification. Our findings are useful to facilitate the development of predictive models for host population dynamics and the related PUUV infection risk for humans and can be used for plant protection and human health protection purposes.}, language = {en} } @article{SperfeldWacker2015, author = {Sperfeld, Erik and Wacker, Alexander}, title = {Maternal diet of Daphnia magna affects offspring growth responses to supplementation with particular polyunsaturated fatty acids}, series = {Hydrobiologia : acta hydrobiologica, hydrographica, limnologica et protistologica}, volume = {755}, journal = {Hydrobiologia : acta hydrobiologica, hydrographica, limnologica et protistologica}, number = {1}, publisher = {Springer}, address = {Dordrecht}, issn = {0018-8158}, doi = {10.1007/s10750-015-2244-y}, pages = {267 -- 282}, year = {2015}, abstract = {Previous studies examining the effects of food quality on zooplankton often controlled for maternal effects of resource provisioning using standardized maternal diets. However, varying nutritional history of mothers may change resource provisioning to their progeny, especially regarding polyunsaturated fatty acids (PUFAs), which may change the interpretation of previously observed fitness responses of offspring. To assess PUFA-mediated maternal provisioning effects on offspring, we raised females of the cladoceran Daphnia magna on diets differing considerably in PUFA composition and raised their offspring on a PUFA-lacking diet supplemented with the omega 3 PUFAs alpha-linolenic acid (ALA) and/or eicosapentaenoic acid (EPA). The mass-specific growth responses of offspring to their own diets were affected by the maternal diet regime, probably due to varying maternal PUFA provisioning. A low maternal provisioning of EPA or ALA was sufficient to prevent growth limitation of offspring by these PUFAs until reaching maturity. A comparison with results of published ALA and EPA supplementation experiments suggests that the previously observed limitation effects depended on the usage of a single algae genus as maternal diet. Therefore, we suggest that maternal diets should be deliberately varied in future studies assessing ecological relevant food quality effects on zooplankton, especially regarding PUFAs.}, language = {en} } @article{AllanManningAltetal.2015, author = {Allan, Eric and Manning, Pete and Alt, Fabian and Binkenstein, Julia and Blaser, Stefan and Bl{\"u}thgen, Nico and B{\"o}hm, Stefan and Grassein, Fabrice and H{\"o}lzel, Norbert and Klaus, Valentin H. and Kleinebecker, Till and Morris, E. Kathryn and Oelmann, Yvonne and Prati, Daniel and Renner, Swen C. and Rillig, Matthias C. and Schaefer, Martin and Schloter, Michael and Schmitt, Barbara and Sch{\"o}ning, Ingo and Schrumpf, Marion and Solly, Emily and Sorkau, Elisabeth and Steckel, Juliane and Steffen-Dewenter, Ingolf and Stempfhuber, Barbara and Tschapka, Marco and Weiner, Christiane N. and Weisser, Wolfgang W. and Werner, Michael and Westphal, Catrin and Wilcke, Wolfgang and Fischer, Markus}, title = {Land use intensification alters ecosystem multifunctionality via loss of biodiversity and changes to functional composition}, series = {Ecology letters}, volume = {18}, journal = {Ecology letters}, number = {8}, publisher = {Wiley-Blackwell}, address = {Hoboken}, issn = {1461-023X}, doi = {10.1111/ele.12469}, pages = {834 -- 843}, year = {2015}, abstract = {Global change, especially land-use intensification, affects human well-being by impacting the delivery of multiple ecosystem services (multifunctionality). However, whether biodiversity loss is a major component of global change effects on multifunctionality in real-world ecosystems, as in experimental ones, remains unclear. Therefore, we assessed biodiversity, functional composition and 14 ecosystem services on 150 agricultural grasslands differing in land-use intensity. We also introduce five multifunctionality measures in which ecosystem services were weighted according to realistic land-use objectives. We found that indirect land-use effects, i.e. those mediated by biodiversity loss and by changes to functional composition, were as strong as direct effects on average. Their strength varied with land-use objectives and regional context. Biodiversity loss explained indirect effects in a region of intermediate productivity and was most damaging when land-use objectives favoured supporting and cultural services. In contrast, functional composition shifts, towards fast-growing plant species, strongly increased provisioning services in more inherently unproductive grasslands.}, language = {en} } @article{SoliveresMaestreUlrichetal.2015, author = {Soliveres, Santiago and Maestre, Fernando T. and Ulrich, Werner and Manning, Peter and Boch, Steffen and Bowker, Matthew A. and Prati, Daniel and Delgado-Baquerizo, Manuel and Quero, Jose L. and Sch{\"o}ning, Ingo and Gallardo, Antonio and Weisser, Wolfgang W. and M{\"u}ller, J{\"o}rg and Socher, Stephanie A. and Garcia-Gomez, Miguel and Ochoa, Victoria and Schulze, Ernst-Detlef and Fischer, Markus and Allan, Eric}, title = {Intransitive competition is widespread in plant communities and maintains their species richness}, series = {Ecology letters}, volume = {18}, journal = {Ecology letters}, number = {8}, publisher = {Wiley-Blackwell}, address = {Hoboken}, issn = {1461-023X}, doi = {10.1111/ele.12456}, pages = {790 -- 798}, year = {2015}, abstract = {Intransitive competition networks, those in which there is no single best competitor, may ensure species coexistence. However, their frequency and importance in maintaining diversity in real-world ecosystems remain unclear. We used two large data sets from drylands and agricultural grasslands to assess: (1) the generality of intransitive competition, (2) intransitivity-richness relationships and (3) effects of two major drivers of biodiversity loss (aridity and land-use intensification) on intransitivity and species richness. Intransitive competition occurred in >65\% of sites and was associated with higher species richness. Intransitivity increased with aridity, partly buffering its negative effects on diversity, but was decreased by intensive land use, enhancing its negative effects on diversity. These contrasting responses likely arise because intransitivity is promoted by temporal heterogeneity, which is enhanced by aridity but may decline with land-use intensity. We show that intransitivity is widespread in nature and increases diversity, but it can be lost with environmental homogenisation.}, language = {en} } @article{WackerPiephoSpijkerman2015, author = {Wacker, Alexander and Piepho, Maike and Spijkerman, Elly}, title = {Photosynthetic and fatty acid acclimation of four phytoplankton species in response to light intensity and phosphorus availability}, series = {European journal of phycology}, volume = {50}, journal = {European journal of phycology}, number = {3}, publisher = {Routledge, Taylor \& Francis Group}, address = {Abingdon}, issn = {0967-0262}, doi = {10.1080/09670262.2015.1050068}, pages = {288 -- 300}, year = {2015}, abstract = {Photosynthetic acclimation of phytoplankton to lower irradiation can be met by several strategies such as increasing the affinity for light or increasing antenna size and stacking of the thylakoids. The latter is reflected by a higher proportion of polyunsaturated fatty acids (PUFAs). Additionally, photosynthetic capacity (P-max), respiratory losses, and proton leakage can be reduced under low light. Here we consider the effect of light intensity and phosphorus availability simultaneously on the photosynthetic acclimation and fatty acid composition of four phytoplankters. We studied representatives of the Chlorophyceae, Cryptophyceae and Mediophyceae, all of which are important components of plankton communities in temperate lakes. In our analysis, excluding fatty acid composition, we found different acclimation strategies in the chlorophytes Scenedesmus quadricauda, Chlamydomonas globosa, cryptophyte Cryptomonas ovata and ochrophyte Cyclotella meneghiniana. We observed interactive effects of light and phosphorus conditions on photosynthetic capacity in S. quadricauda and Cry. ovata. Cry. ovata can be characterized as a low light-acclimated species, whereas S. quadricauda and Cyc. meneghiniana can cope best with a combination of high light intensities and low phosphorus supply. Principal component analyses (PCA), including fatty acid composition, showed further species-specific patterns in their regulation of P-max with PUFAs and light. In S. quadricauda and Cyc. meneghiniana, PUFAs negatively affected the relationship between P-max and light. In Chl. globosa, lower light coincided with higher PUFAs and lower P-max, but PCA also indicated that PUFAs had no direct influence on P-max. PUFAs and P-max were unaffected by light in Cry. ovata. We did not observe a general trend in the four species tested and concluded that, in particular, the interactive effects highlight the importance of taking into account more than one environmental factor when assessing photosynthetic acclimation to lower irradiation.}, language = {en} } @article{SicardKappelJosephsetal.2015, author = {Sicard, Adrien and Kappel, Christian and Josephs, Emily B. and Lee, Young Wha and Marona, Cindy and Stinchcombe, John R. and Wright, Stephen I. and Lenhard, Michael}, title = {Divergent sorting of a balanced ancestral polymorphism underlies the establishment of gene-flow barriers in Capsella}, series = {Nature Communications}, volume = {6}, journal = {Nature Communications}, publisher = {Nature Publ. Group}, address = {London}, issn = {2041-1723}, doi = {10.1038/ncomms8960}, pages = {10}, year = {2015}, abstract = {In the Bateson-Dobzhansky-Muller model of genetic incompatibilities post-zygotic gene-flow barriers arise by fixation of novel alleles at interacting loci in separated populations. Many such incompatibilities are polymorphic in plants, implying an important role for genetic drift or balancing selection in their origin and evolution. Here we show that NPR1 and RPP5 loci cause a genetic incompatibility between the incipient species Capsella grandiflora and C. rubella, and the more distantly related C. rubella and C. orientalis. The incompatible RPP5 allele results from a mutation in C. rubella, while the incompatible NPR1 allele is frequent in the ancestral C. grandiflora. Compatible and incompatible NPR1 haplotypes are maintained by balancing selection in C. grandiflora, and were divergently sorted into the derived C. rubella and C. orientalis. Thus, by maintaining differentiated alleles at high frequencies, balancing selection on ancestral polymorphisms can facilitate establishing gene-flow barriers between derived populations through lineage sorting of the alternative alleles.}, language = {en} } @article{KappelTrostCzesnicketal.2015, author = {Kappel, Christian and Trost, Gerda and Czesnick, Hj{\"o}rdis and Ramming, Anna and Kolbe, Benjamin and Vi, Son Lang and Bispo, Claudia and Becker, J{\"o}rg D. and de Moor, Cornelia and Lenhard, Michael}, title = {Genome-Wide Analysis of PAPS1-Dependent Polyadenylation Identifies Novel Roles for Functionally Specialized Poly(A) Polymerases in Arabidopsis thaliana}, series = {PLoS Genetics : a peer-reviewed, open-access journal}, volume = {11}, journal = {PLoS Genetics : a peer-reviewed, open-access journal}, number = {8}, publisher = {PLoS}, address = {San Fransisco}, issn = {1553-7390}, doi = {10.1371/journal.pgen.1005474}, pages = {30}, year = {2015}, abstract = {The poly(A) tail at 3' ends of eukaryotic mRNAs promotes their nuclear export, stability and translational efficiency, and changes in its length can strongly impact gene expression. The Arabidopsis thaliana genome encodes three canonical nuclear poly(A) polymerases, PAPS1, PAPS2 and PAPS4. As shown by their different mutant phenotypes, these three isoforms are functionally specialized, with PAPS1 modifying organ growth and suppressing a constitutive immune response. However, the molecular basis of this specialization is largely unknown. Here, we have estimated poly(A)-tail lengths on a transcriptome-wide scale in wild-type and paps1 mutants. This identified categories of genes as particularly strongly affected in paps1 mutants, including genes encoding ribosomal proteins, cell-division factors and major carbohydrate-metabolic proteins. We experimentally verified two novel functions of PAPS1 in ribosome biogenesis and redox homoeostasis that were predicted based on the analysis of poly(A)-tail length changes in paps1 mutants. When overlaying the PAPS1-dependent effects observed here with coexpression analysis based on independent microarray data, the two clusters of transcripts that are most closely coexpressed with PAPS1 show the strongest change in poly(A)-tail length and transcript abundance in paps1 mutants in our analysis. This suggests that their coexpression reflects at least partly the preferential polyadenylation of these transcripts by PAPS1 versus the other two poly(A)-polymerase isoforms. Thus, transcriptome-wide analysis of poly(A)-tail lengths identifies novel biological functions and likely target transcripts for polyadenylation by PAPS1. Data integration with large-scale co-expression data suggests that changes in the relative activities of the isoforms are used as an endogenous mechanism to co-ordinately modulate plant gene expression.}, language = {en} } @article{CzesnickLenhard2015, author = {Czesnick, Hj{\"o}rdis and Lenhard, Michael}, title = {Size Control in Plants-Lessons from Leaves and Flowers}, series = {Cold Spring Harbor perspectives in biology}, volume = {7}, journal = {Cold Spring Harbor perspectives in biology}, number = {8}, publisher = {Cold Spring Harbor Laboratory Press}, address = {Cold Spring Harbor, NY}, issn = {1943-0264}, doi = {10.1101/cshperspect.a019190}, pages = {16}, year = {2015}, abstract = {To achieve optimal functionality, plant organs like leaves and petals have to grow to a certain size. Beginning with a limited number of undifferentiated cells, the final size of an organ is attained by a complex interplay of cell proliferation and subsequent cell expansion. Regulatory mechanisms that integrate intrinsic growth signals and environmental cues are required to enable optimal leaf and flower development. This review focuses on plant-specific principles of growth reaching from the cellular to the organ level. The currently known genetic pathways underlying these principles are summarized and network connections are highlighted. Putative non-cell autonomously acting mechanisms that might coordinate plant-cell growth are discussed.}, language = {en} } @article{HerterMcKennaFrazeretal.2015, author = {Herter, Susanne and McKenna, Shane M. and Frazer, Andrew R. and Leimk{\"u}hler, Silke and Carnell, Andrew J. and Turner, Nicholas J.}, title = {Galactose Oxidase Variants for the Oxidation of Amino Alcohols in Enzyme Cascade Synthesis}, series = {ChemCatChem : heterogeneous \& homogeneous \& bio- \& nano-catalysis ; a journal of ChemPubSoc Europe}, volume = {7}, journal = {ChemCatChem : heterogeneous \& homogeneous \& bio- \& nano-catalysis ; a journal of ChemPubSoc Europe}, number = {15}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {1867-3880}, doi = {10.1002/cctc.201500218}, pages = {2313 -- 2317}, year = {2015}, abstract = {The use of selected engineered galactose oxidase (GOase) variants for the oxidation of amino alcohols to aldehydes under mild conditions in aqueous systems is reported. GOase variant F-2 catalyses the regioselective oxidation of N-carbobenzyloxy (Cbz)-protected 3-amino-1,2-propanediol to the corresponding -hydroxyaldehyde which was then used in an aldolase reaction. Another variant, M3-5, was found to exhibit activity towards free and N-Cbz-protected aliphatic and aromatic amino alcohols allowing the synthesis of lactams such as 3,4-dihydronaphthalen-1(2H)-one, 2-pyrrolidone and valerolactam in one-pot tandem reactions with xanthine dehydrogenase (XDH) or aldehyde oxidase (PaoABC).}, language = {en} } @article{UestuenBartetzkoBoernke2015, author = {{\"U}st{\"u}n, Suayib and Bartetzko, Verena and B{\"o}rnke, Frederik}, title = {The Xanthomonas effector XopJ triggers a conditional hypersensitive response upon treatment of N. benthamiana leaves with salicylic acid}, series = {Frontiers in plant science}, volume = {6}, journal = {Frontiers in plant science}, publisher = {Frontiers Research Foundation}, address = {Lausanne}, issn = {1664-462X}, doi = {10.3389/fpls.2015.00599}, pages = {11}, year = {2015}, abstract = {XopJ is a Xanthomonas type III effector protein that promotes bacterial virulence on susceptible pepper plants through the inhibition of the host cell proteasome and a resultant suppression of salicylic acid (SA) - dependent defense responses. We show here that Nicotiana benthamiana leaves transiently expressing XopJ display hypersensitive response (HR) -like symptoms when exogenously treated with SA. This apparent avirulence function of XopJ was further dependent on effector myristoylation as well as on an intact catalytic triad, suggesting a requirement of its enzymatic activity for HR-like symptom elicitation. The ability of XopJ to cause a HR-like symptom development upon SA treatment was lost upon silencing of SGT1 and NDR1, respectively, but was independent of EDS1 silencing, suggesting that XopJ is recognized by an R protein of the CC-NBS-LRR class. Furthermore, silencing of NPR1 abolished the elicitation of HR-like symptoms in XopJ expressing leaves after SA application. Measurement of the proteasome activity indicated that proteasome inhibition by XopJ was alleviated in the presence of SA, an effect that was not observed in NPR1 silenced plants. Our results suggest that XopJ - triggered HR-like symptoms are closely related to the virulence function of the effector and that XopJ follows a two-signal model in order to elicit a response in the non-host plant N. benthamiana.}, language = {en} } @article{StoofLeichsenringHerzschuhPestryakovaetal.2015, author = {Stoof-Leichsenring, Kathleen Rosemarie and Herzschuh, Ulrike and Pestryakova, Luidmila Agafyevna and Klemm, Juliane and Epp, Laura Saskia and Tiedemann, Ralph}, title = {Genetic data from algae sedimentary DNA reflect the influence of environment over geography}, series = {Scientific reports}, volume = {5}, journal = {Scientific reports}, publisher = {Nature Publ. Group}, address = {London}, issn = {2045-2322}, doi = {10.1038/srep12924}, pages = {11}, year = {2015}, abstract = {Genetic investigations on eukaryotic plankton confirmed the existence of modern biogeographic patterns, but analyses of palaeoecological data exploring the temporal variability of these patterns have rarely been presented. Ancient sedimentary DNA proved suitable for investigations of past assemblage turnover in the course of environmental change, but genetic relatedness of the identified lineages has not yet been undertaken. Here, we investigate the relatedness of diatom lineages in Siberian lakes along environmental gradients (i.e. across treeline transects), over geographic distance and through time (i.e. the last 7000 years) using modern and ancient sedimentary DNA. Our results indicate that closely-related Staurosira lineages occur in similar environments and less-related lineages in dissimilar environments, in our case different vegetation and co-varying climatic and limnic variables across treeline transects. Thus our study reveals that environmental conditions rather than geographic distance is reflected by diatom-relatedness patterns in space and time. We tentatively speculate that the detected relatedness pattern in Staurosira across the treeline could be a result of adaptation to diverse environmental conditions across the arctic boreal treeline, however, a geographically-driven divergence and subsequent repopulation of ecologically different habitats might also be a potential explanation for the observed pattern.}, language = {en} } @article{HartmannHasenkampMayeretal.2015, author = {Hartmann, Stefanie and Hasenkamp, Natascha and Mayer, Jens and Michaux, Johan and Morand, Serge and Mazzoni, Camila J. and Roca, Alfred L. and Greenwood, Alex D.}, title = {Endogenous murine leukemia retroviral variation across wild European and inbred strains of house mouse}, series = {BMC genomics}, volume = {16}, journal = {BMC genomics}, publisher = {BioMed Central}, address = {London}, issn = {1471-2164}, doi = {10.1186/s12864-015-1766-z}, pages = {13}, year = {2015}, abstract = {Background: Endogenous murine leukemia retroviruses (MLVs) are high copy number proviral elements difficult to comprehensively characterize using standard low throughput sequencing approaches. However, high throughput approaches generate data that is challenging to process, interpret and present. Results: Next generation sequencing (NGS) data was generated for MLVs from two wild caught Mus musculus domesticus (from mainland France and Corsica) and for inbred laboratory mouse strains C3H, LP/J and SJL. Sequence reads were grouped using a novel sequence clustering approach as applied to retroviral sequences. A Markov cluster algorithm was employed, and the sequence reads were queried for matches to specific xenotropic (Xmv), polytropic (Pmv) and modified polytropic (Mpmv) viral reference sequences. Conclusions: Various MLV subtypes were more widespread than expected among the mice, which may be due to the higher coverage of NGS, or to the presence of similar sequence across many different proviral loci. The results did not correlate with variation in the major MLV receptor Xpr1, which can restrict exogenous MLVs, suggesting that endogenous MLV distribution may reflect gene flow more than past resistance to infection.}, language = {en} } @article{JetzschmannJagerszkiDechtriratetal.2015, author = {Jetzschmann, Katharina J. and Jagerszki, Gyula and Dechtrirat, Decha and Yarman, Aysu and Gajovic-Eichelmann, Nenad and Gilsing, Hans-Detlev and Schulz, Burkhard and Gyurcsanyi, Robert E. and Scheller, Frieder W.}, title = {Vectorially Imprinted Hybrid Nanofilm for Acetylcholinesterase Recognition}, series = {Advanced functional materials}, volume = {25}, journal = {Advanced functional materials}, number = {32}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {1616-301X}, doi = {10.1002/adfm.201501900}, pages = {5178 -- 5183}, year = {2015}, abstract = {Effective recognition of enzymatically active tetrameric acetylcholinesterase (AChE) is accomplished by a hybrid nanofilm composed of a propidium-terminated self-assembled monolayer (Prop-SAM) which binds AChE via its peripheral anionic site (PAS) and an ultrathin electrosynthesized molecularly imprinted polymer (MIP) cover layer of a novel carboxylate-modified derivative of 3,4-propylenedioxythiophene. The rebinding of the AChE to the MIP/Prop-SAM nanofilm covered electrode is detected by measuring in situ the enzymatic activity. The oxidative current of the released thiocholine is dependent on the AChE concentration from approximate to 0.04 x 10(-6) to 0.4 x 10(-6)m. An imprinting factor of 9.9 is obtained for the hybrid MIP, which is among the best values reported for protein imprinting. The dissociation constant characterizing the strength of the MIP-AChE binding is 4.2 x 10(-7)m indicating the dominant role of the PAS-Prop-SAM interaction, while the benefit of the MIP nanofilm covering the Prop-SAM layer is the effective suppression of the cross-reactivity toward competing proteins as compared with the Prop-SAM. The threefold selectivity gain provided by i) the shape-specific MIP filter, ii) the propidium-SAM, iii) signal generation only by the AChE bound to the nanofilm shows promise for assessing AChE activity levels in cerebrospinal fluid.}, language = {en} } @article{HeinzeWernerWeberetal.2015, author = {Heinze, Johannes and Werner, Tony and Weber, Ewald and Rillig, Matthias C. and Joshi, Jasmin Radha}, title = {Soil biota effects on local abundances of three grass species along a land-use gradient}, series = {Oecologia}, volume = {179}, journal = {Oecologia}, number = {1}, publisher = {Springer}, address = {New York}, issn = {0029-8549}, doi = {10.1007/s00442-015-3336-0}, pages = {249 -- 259}, year = {2015}, abstract = {Biotic plant-soil interactions and land-use intensity are known to affect plant individual fitness as well as competitiveness and therefore plant-species abundances in communities. Therefore, a link between soil biota and land-use intensity on local abundance of plant species in grasslands can be expected. In two greenhouse experiments, we investigated the effects of soil biota from grassland sites differing in land-use intensity on three grass species that vary in local abundances along this land-use gradient. We were interested in those soil-biota effects that are associated with land-use intensity, and whether these effects act directly or indirectly. Therefore, we grew the three plant species in two separate experiments as single individuals and in mixtures and compared their performance. As single plants, all three grasses showed a similar performance with and without soil biota. In contrast, in mixtures growth of the species in response to the presence or absence of soil biota differed. This resulted in different soil-biota effects that tend to correspond with patterns of species-specific abundances in the field for two of the three species tested. Our results highlight the importance of indirect interactions between plants and soil microorganisms and suggest that combined effects of soil biota and plant-plant interactions are involved in structuring plant communities. In conclusion, our experiments suggest that soil biota may have the potential to alter effects of plant-plant interactions and therefore influence plant-species abundances and diversity in grasslands.}, language = {en} } @article{GarciaBuckMcMahonetal.2015, author = {Garcia, Sarahi L. and Buck, Moritz and McMahon, Katherine D. and Grossart, Hans-Peter and Eiler, Alexander and Warnecke, Falk}, title = {Auxotrophy and intrapopulation complementary in the "interactome' of a cultivated freshwater model community}, series = {Molecular ecology}, volume = {24}, journal = {Molecular ecology}, number = {17}, publisher = {Wiley-Blackwell}, address = {Hoboken}, issn = {0962-1083}, doi = {10.1111/mec.13319}, pages = {4449 -- 4459}, year = {2015}, abstract = {Microorganisms are usually studied either in highly complex natural communities or in isolation as monoclonal model populations that we manage to grow in the laboratory. Here, we uncover the biology of some of the most common and yet-uncultured bacteria in freshwater environments using a mixed culture from Lake Grosse Fuchskuhle. From a single shotgun metagenome of a freshwater mixed culture of low complexity, we recovered four high-quality metagenome-assembled genomes (MAGs) for metabolic reconstruction. This analysis revealed the metabolic interconnectedness and niche partitioning of these naturally dominant bacteria. In particular, vitamin- and amino acid biosynthetic pathways were distributed unequally with a member of Crenarchaeota most likely being the sole producer of vitamin B12 in the mixed culture. Using coverage-based partitioning of the genes recovered from a single MAG intrapopulation metabolic complementarity was revealed pointing to social' interactions for the common good of populations dominating freshwater plankton. As such, our MAGs highlight the power of mixed cultures to extract naturally occurring interactomes' and to overcome our inability to isolate and grow the microbes dominating in nature.}, language = {en} } @article{GarapatiFeilLunnetal.2015, author = {Garapati, Prashanth and Feil, Regina and Lunn, John Edward and Van Dijck, Patrick and Balazadeh, Salma and M{\"u}ller-R{\"o}ber, Bernd}, title = {Transcription Factor Arabidopsis Activating Factor1 Integrates Carbon Starvation Responses with Trehalose Metabolism}, series = {Plant physiology : an international journal devoted to physiology, biochemistry, cellular and molecular biology, biophysics and environmental biology of plants}, volume = {169}, journal = {Plant physiology : an international journal devoted to physiology, biochemistry, cellular and molecular biology, biophysics and environmental biology of plants}, number = {1}, publisher = {American Society of Plant Physiologists}, address = {Rockville}, issn = {0032-0889}, doi = {10.1104/pp.15.00917}, pages = {379 -- 390}, year = {2015}, abstract = {Plants respond to low carbon supply by massive reprogramming of the transcriptome and metabolome. We show here that the carbon starvation-induced NAC (for NO APICAL MERISTEM/ARABIDOPSIS TRANSCRIPTION ACTIVATION FACTOR/CUP-SHAPED COTYLEDON) transcription factor Arabidopsis (Arabidopsis thaliana) Transcription Activation Factor1 (ATAF1) plays an important role in this physiological process. We identified TREHALASE1, the only trehalase-encoding gene in Arabidopsis, as a direct downstream target of ATAF1. Overexpression of ATAF1 activates TREHALASE1 expression and leads to reduced trehalose-6-phosphate levels and a sugar starvation metabolome. In accordance with changes in expression of starch biosynthesis-and breakdown-related genes, starch levels are generally reduced in ATAF1 overexpressors but elevated in ataf1 knockout plants. At the global transcriptome level, genes affected by ATAF1 are broadly associated with energy and carbon starvation responses. Furthermore, transcriptional responses triggered by ATAF1 largely overlap with expression patterns observed in plants starved for carbon or energy supply. Collectively, our data highlight the existence of a positively acting feedforward loop between ATAF1 expression, which is induced by carbon starvation, and the depletion of cellular carbon/energy pools that is triggered by the transcriptional regulation of downstream gene regulatory networks by ATAF1.}, language = {en} } @article{AlbertAuffretCosynsetal.2015, author = {Albert, Aurelie and Auffret, Alistair G. and Cosyns, Eric and Cousins, Sara A. O. and Eichberg, Carsten and Eycott, Amy E. and Heinken, Thilo and Hoffmann, Maurice and Jaroszewicz, Bogdan and Malo, Juan E. and Marell, Anders and Mouissie, Maarten and Pakeman, Robin J. and Picard, Melanie and Plue, Jan and Poschlod, Peter and Provoost, Sam and Schulze, Kiowa Alraune and Baltzinger, Christophe}, title = {Seed dispersal by ungulates as an ecological filter: a trait-based meta-analysis}, series = {Oikos}, volume = {124}, journal = {Oikos}, number = {9}, publisher = {Wiley-Blackwell}, address = {Hoboken}, issn = {0030-1299}, doi = {10.1111/oik.02512}, pages = {1109 -- 1120}, year = {2015}, abstract = {Plant communities are often dispersal-limited and zoochory can be an efficient mechanism for plants to colonize new patches of potentially suitable habitat. We predicted that seed dispersal by ungulates acts as an ecological filter - which differentially affects individuals according to their characteristics and shapes species assemblages - and that the filter varies according to the dispersal mechanism (endozoochory, fur-epizoochory and hoof-epizoochory). We conducted two-step individual participant data meta-analyses of 52 studies on plant dispersal by ungulates in fragmented landscapes, comparing eight plant traits and two habitat indicators between dispersed and non-dispersed plants. We found that ungulates dispersed at least 44\% of the available plant species. Moreover, some plant traits and habitat indicators increased the likelihood for plant of being dispersed. Persistent or nitrophilous plant species from open habitats or bearing dry or elongated diaspores were more likely to be dispersed by ungulates, whatever the dispersal mechanism. In addition, endozoochory was more likely for diaspores bearing elongated appendages whereas epizoochory was more likely for diaspores released relatively high in vegetation. Hoof-epizoochory was more likely for light diaspores without hooked appendages. Fur-epizoochory was more likely for diaspores with appendages, particularly elongated or hooked ones. We thus observed a gradient of filtering effect among the three dispersal mechanisms. Endozoochory had an effect of rather weak intensity (impacting six plant characteristics with variations between ungulate-dispersed and non-dispersed plant species mostly below 25\%), whereas hoof-epizoochory had a stronger effect (eight characteristics included five ones with above 75\% variation), and fur-epizoochory an even stronger one (nine characteristics included six ones with above 75\% variation). Our results demonstrate that seed dispersal by ungulates is an ecological filter whose intensity varies according to the dispersal mechanism considered. Ungulates can thus play a key role in plant community dynamics and have implications for plant spatial distribution patterns at multiple scales.}, language = {en} } @article{WackerMarzetzSpijkerman2015, author = {Wacker, Alexander and Marzetz, Vanessa and Spijkerman, Elly}, title = {Interspecific competition in phytoplankton drives the availability of essential mineral and biochemical nutrients}, series = {Ecology : a publication of the Ecological Society of America}, volume = {96}, journal = {Ecology : a publication of the Ecological Society of America}, number = {9}, publisher = {Wiley}, address = {Washington}, issn = {0012-9658}, doi = {10.1890/14-1915.1}, pages = {2467 -- 2477}, year = {2015}, abstract = {The underlying mechanisms and consequences of competition and diversity are central themes in ecology. A higher diversity of primary producers often results in higher resource use efficiency in aquatic and terrestrial ecosystems. This may result in more food for consumers on one hand, while, on the other hand, it can also result in a decreased food quality for consumers; higher biomass combined with the same availability of the limiting compound directly reduces the dietary proportion of the limiting compound. Here we tested whether and how interspecific competition in phytoplankton communities leads to changes in resource use efficiency and cellular concentrations of nutrients and fatty acids. The measured particulate carbon : phosphorus ratios (C:P) and fatty acid concentrations in the communities were compared to the theoretically expected ratios and concentrations of measurements on simultaneously running monocultures. With interspecific competition, phytoplankton communities had higher concentrations of the monounsaturated fatty acid oleic acid and also much higher concentrations of the ecologically and physiologically relevant long-chain polyunsaturated fatty acid eicosapentaenoic acid than expected concentrations based on monocultures. Such higher availability of essential fatty acids may contribute to the positive relationship between phytoplankton diversity and zooplankton growth, and may compensate limitations by mineral nutrients in higher trophic levels.}, language = {en} }