@article{VatovaRubinGrossartetal.2022, author = {Vatova, Mariyana and Rubin, Conrad and Grossart, Hans-Peter and Goncalves, Susana C. and Schmidt, Susanne I. and Jarić, Ivan}, title = {Aquatic fungi: largely neglected targets for conservation}, series = {Frontiers in ecology and the environment}, volume = {20}, journal = {Frontiers in ecology and the environment}, number = {4}, publisher = {Wiley}, address = {Hoboken}, issn = {1540-9295}, doi = {10.1002/fee.2495}, pages = {207 -- 209}, year = {2022}, language = {en} } @article{TolomeevDubovskayaKirillinetal.2022, author = {Tolomeev, Aleksandr P. and Dubovskaya, Olga P. and Kirillin, Georgiy and Buseva, Zhanna and Kolmakova, Olesya and Grossart, Hans-Peter and Tang, Kam W. and Gladyšev, Michail I.}, title = {Degradation of dead cladoceran zooplankton and their contribution to organic carbon cycling in stratified lakes}, series = {Journal of plankton research}, volume = {44}, journal = {Journal of plankton research}, number = {3}, publisher = {Oxford Univ. Press}, address = {Oxford}, issn = {0142-7873}, doi = {10.1093/plankt/fbac023}, pages = {386 -- 400}, year = {2022}, abstract = {The contribution of dead zooplankton biomass to carbon cycle in aquatic ecosystems is practically unknown. Using abundance data of zooplankton in water column and dead zooplankton in sediment traps in Lake Stechlin, an ecological-mathematical model was developed to simulate the abundance and sinking of zooplankton carcasses and predict the related release of labile organic matter (LOM) into the water column. We found species-specific differences in mortality rate of the dominant zooplankton: Daphnia cucullata, Bosmina coregoni and Diaphanosoma brachyurum (0.008, 0.129 and 0.020 day(-1), respectively) and differences in their carcass sinking velocities in metalimnion (and hypolimnion): 2.1 (7.64), 14.0 (19.5) and 1.1 (5.9) m day(-1), respectively. Our model simulating formation and degradation processes of dead zooplankton predicted a bimodal distribution of the released LOM: epilimnic and metalimnic peaks of comparable intensity, ca. 1 mg DW m(-3) day(-1). Maximum degradation of carcasses up to ca. 1.7 mg DW m(-3) day(-1) occurred in the density gradient zone of metalimnion. LOM released from zooplankton carcasses into the surrounding water may stimulate microbial activity and facilitate microbial degradation of more refractory organic matter; therefore, dead zooplankton are expected to be an integral part of water column carbon source/sink dynamics in stratified lakes.}, language = {en} } @article{IonescuBizicKarnataketal.2022, author = {Ionescu, Danny and Bizic, Mina and Karnatak, Rajat and Musseau, Camille L. and Onandia, Gabriela and Kasada, Minoru and Berger, Stella A. and Nejstgaard, Jens Christian and Ryo, Masahiro and Lischeid, Gunnar and Gessner, Mark O. and Wollrab, Sabine and Grossart, Hans-Peter}, title = {From microbes to mammals: Pond biodiversity homogenization across different land-use types in an agricultural landscape}, series = {Ecological monographs}, volume = {92}, journal = {Ecological monographs}, number = {3}, publisher = {Wiley}, address = {Hoboken}, issn = {0012-9615}, doi = {10.1002/ecm.1523}, pages = {28}, year = {2022}, abstract = {Local biodiversity patterns are expected to strongly reflect variation in topography, land use, dispersal boundaries, nutrient supplies, contaminant spread, management practices, and other anthropogenic influences. Contrary to this expectation, studies focusing on specific taxa revealed a biodiversity homogenization effect in areas subjected to long-term intensive industrial agriculture. We investigated whether land use affects biodiversity levels and community composition (alpha- and beta-diversity) in 67 kettle holes (KH) representing small aquatic islands embedded in the patchwork matrix of a largely agricultural landscape comprising grassland, forest, and arable fields. These KH, similar to millions of standing water bodies of glacial origin, spread across northern Europe, Asia, and North America, are physico-chemically diverse and differ in the degree of coupling with their surroundings. We assessed aquatic and sediment biodiversity patterns of eukaryotes, Bacteria, and Archaea in relation to environmental features of the KH, using deep-amplicon-sequencing of environmental DNA (eDNA). First, we asked whether deep sequencing of eDNA provides a representative picture of KH aquatic biodiversity across the Bacteria, Archaea, and eukaryotes. Second, we investigated if and to what extent KH biodiversity is influenced by the surrounding land use. We hypothesized that richness and community composition will greatly differ in KH from agricultural land use compared with KH in grasslands and forests. Our data show that deep eDNA amplicon sequencing is useful for in-depth assessments of cross-domain biodiversity comprising both micro- and macro-organisms, but has limitations with respect to single-taxa conservation studies. Using this broad method, we show that sediment eDNA, integrating several years to decades, depicts the history of agricultural land-use intensification. Aquatic biodiversity was best explained by seasonality, whereas land-use type explained little of the variation. We concluded that, counter to our hypothesis, land use intensification coupled with landscape wide nutrient enrichment (including atmospheric deposition), groundwater connectivity between KH and organismal (active and passive) dispersal in the tight network of ponds, resulted in a biodiversity homogenization in the KH water, leveling off today's detectable differences in KH biodiversity between land-use types. These findings have profound implications for measures and management strategies to combat current biodiversity loss in agricultural landscapes worldwide.}, language = {en} } @article{ZoccaratoSherMikietal.2022, author = {Zoccarato, Luca and Sher, Daniel and Miki, Takeshi and Segre, Daniel and Grossart, Hans-Peter}, title = {A comparative whole-genome approach identifies bacterial traits for marine microbial interactions}, series = {Communications biology}, volume = {5}, journal = {Communications biology}, number = {1}, publisher = {Springer Nature}, address = {Berlin}, issn = {2399-3642}, doi = {10.1038/s42003-022-03184-4}, pages = {13}, year = {2022}, abstract = {Luca Zoccarato, Daniel Sher et al. leverage publicly available bacterial genomes from marine and other environments to examine traits underlying microbial interactions. Their results provide a valuable resource to investigate clusters of functional and linked traits to better understand marine bacteria community assembly and dynamics. Microbial interactions shape the structure and function of microbial communities with profound consequences for biogeochemical cycles and ecosystem health. Yet, most interaction mechanisms are studied only in model systems and their prevalence is unknown. To systematically explore the functional and interaction potential of sequenced marine bacteria, we developed a trait-based approach, and applied it to 473 complete genomes (248 genera), representing a substantial fraction of marine microbial communities. We identified genome functional clusters (GFCs) which group bacterial taxa with common ecology and life history. Most GFCs revealed unique combinations of interaction traits, including the production of siderophores (10\% of genomes), phytohormones (3-8\%) and different B vitamins (57-70\%). Specific GFCs, comprising Alpha- and Gammaproteobacteria, displayed more interaction traits than expected by chance, and are thus predicted to preferentially interact synergistically and/or antagonistically with bacteria and phytoplankton. Linked trait clusters (LTCs) identify traits that may have evolved to act together (e.g., secretion systems, nitrogen metabolism regulation and B vitamin transporters), providing testable hypotheses for complex mechanisms of microbial interactions. Our approach translates multidimensional genomic information into an atlas of marine bacteria and their putative functions, relevant for understanding the fundamental rules that govern community assembly and dynamics.}, language = {en} } @article{BizicIonescuKarnataketal.2022, author = {Bizic, Mina and Ionescu, Danny and Karnatak, Rajat and Musseau, Camille L. and Onandia, Gabriela and Berger, Stella A. and Nejstgaard, Jens C. and Lischeid, Gunnar and Gessner, Mark O. and Wollrab, Sabine and Grossart, Hans-Peter}, title = {Land-use type temporarily affects active pond community structure but not gene expression patterns}, series = {Molecular ecology}, volume = {31}, journal = {Molecular ecology}, number = {6}, publisher = {Wiley}, address = {Hoboken}, issn = {0962-1083}, doi = {10.1111/mec.16348}, pages = {1716 -- 1734}, year = {2022}, abstract = {Changes in land use and agricultural intensification threaten biodiversity and ecosystem functioning of small water bodies. We studied 67 kettle holes (KH) in an agricultural landscape in northeastern Germany using landscape-scale metatranscriptomics to understand the responses of active bacterial, archaeal and eukaryotic communities to land-use type. These KH are proxies of the millions of small standing water bodies of glacial origin spread across the northern hemisphere. Like other landscapes in Europe, the study area has been used for intensive agriculture since the 1950s. In contrast to a parallel environmental DNA study that suggests the homogenization of biodiversity across KH, conceivably resulting from long-lasting intensive agriculture, land-use type affected the structure of the active KH communities during spring crop fertilization, but not a month later. This effect was more pronounced for eukaryotes than for bacteria. In contrast, gene expression patterns did not differ between months or across land-use types, suggesting a high degree of functional redundancy across the KH communities. Variability in gene expression was best explained by active bacterial and eukaryotic community structures, suggesting that these changes in functioning are primarily driven by interactions between organisms. Our results indicate that influences of the surrounding landscape result in temporary changes in the activity of different community members. Thus, even in KH where biodiversity has been homogenized, communities continue to respond to land management. This potential needs to be considered when developing sustainable management options for restoration purposes and for successful mitigation of further biodiversity loss in agricultural landscapes.}, language = {en} } @article{HuangQiaoXuetal.2021, author = {Huang, Lixing and Qiao, Ying and Xu, Wei and Gong, Linfeng and He, Rongchao and Qi, Weilu and Gao, Qiancheng and Cai, Hongyan and Grossart, Hans-Peter and Yan, Qingpi}, title = {Full-length transcriptome}, series = {Frontiers in immunology}, volume = {12}, journal = {Frontiers in immunology}, publisher = {Frontiers Media}, address = {Lausanne}, issn = {1664-3224}, doi = {10.3389/fimmu.2021.737332}, pages = {18}, year = {2021}, abstract = {Fish is considered as a supreme model for clarifying the evolution and regulatory mechanism of vertebrate immunity. However, the knowledge of distinct immune cell populations in fish is still limited, and further development of techniques advancing the identification of fish immune cell populations and their functions are required. Single cell RNA-seq (scRNA-seq) has provided a new approach for effective in-depth identification and characterization of cell subpopulations. Current approaches for scRNA-seq data analysis usually rely on comparison with a reference genome and hence are not suited for samples without any reference genome, which is currently very common in fish research. Here, we present an alternative, i.e. scRNA-seq data analysis with a full-length transcriptome as a reference, and evaluate this approach on samples from Epinephelus coioides-a teleost without any published genome. We show that it reconstructs well most of the present transcripts in the scRNA-seq data achieving a sensitivity equivalent to approaches relying on genome alignments of related species. Based on cell heterogeneity and known markers, we characterized four cell types: T cells, B cells, monocytes/macrophages (Mo/M phi) and NCC (non-specific cytotoxic cells). Further analysis indicated the presence of two subsets of Mo/M phi including M1 and M2 type, as well as four subsets in B cells, i.e. mature B cells, immature B cells, pre B cells and early-pre B cells. Our research will provide new clues for understanding biological characteristics, development and function of immune cell populations of teleost. Furthermore, our approach provides a reliable alternative for scRNA-seq data analysis in teleost for which no reference genome is currently available.}, language = {en} } @article{MannaZoccaratoBanchietal.2022, author = {Manna, Vincenzo and Zoccarato, Luca and Banchi, Elisa and Arnosti, Carol and Grossart, Hans-Peter and Celussi, Mauro}, title = {Linking lifestyle and foraging strategies of marine bacteria}, series = {Environmental microbiology reports}, volume = {14}, journal = {Environmental microbiology reports}, number = {4}, publisher = {Wiley}, address = {Hoboken}, issn = {1758-2229}, doi = {10.1111/1758-2229.13059}, pages = {549 -- 558}, year = {2022}, abstract = {Microbe-mediated enzymatic hydrolysis of organic matter entails the production of hydrolysate, the recovery of which may be more or less efficient. The selfish uptake mechanism, recently discovered, allows microbes to hydrolyze polysaccharides and take up large oligomers, which are then degraded in the periplasmic space. By minimizing the hydrolysate loss, selfish behaviour may be profitable for free-living cells dwelling in a patchy substrate landscape. However, selfish uptake seems to be tailored to algal-derived polysaccharides, abundant in organic particles, suggesting that particle-attached microbes may use this strategy. We tracked selfish polysaccharides uptake in surface microbial communities of the northeastern Mediterranean Sea, linking the occurrence of this processing mode with microbial lifestyle. Additionally, we set up fluorescently labelled polysaccharides incubations supplying phytodetritus to investigate a 'pioneer' scenario for particle-attached microbes. Under both conditions, selfish behaviour was almost exclusively carried out by particle-attached microbes, suggesting that this mechanism may represent an advantage in the race for particle exploitation. Our findings shed light on the selfish potential of particle-attached microbes, suggesting multifaceted foraging strategies exerted by particle colonizers.}, language = {en} } @article{ZhangHuYangetal.2022, author = {Zhang, Kai and Hu, Jiege and Yang, Shuai and Xu, Wei and Wang, Zhichao and Zhuang, Peiwen and Grossart, Hans-Peter and Luo, Zhuhua}, title = {Biodegradation of polyester polyurethane by the marine fungus Cladosporium halotolerans 6UPA1}, series = {Journal of hazardous materials}, volume = {437}, journal = {Journal of hazardous materials}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0304-3894}, doi = {10.1016/j.jhazmat.2022.129406}, pages = {10}, year = {2022}, abstract = {Lack of degradability and the accumulation of polymeric wastes increase the risk for the health of the environment. Recently, recycling of polymeric waste materials becomes increasingly important as raw materials for polymer synthesis are in short supply due to the rise in price and supply chain disruptions. As an important polymer, polyurethane (PU) is widely used in modern life, therefore, PU biodegradation is desirable to avoid its accumulation in the environment. In this study, we isolated a fungal strain Cladosporium halotolerans from the deep sea which can grow in mineral medium with a polyester PU (Impranil DLN) as a sole carbon source. Further, we demonstrate that it can degrade up to 80\% of Impranil PU after 3 days of incubation at 28 celcius by breaking the carbonyl groups (1732 cm(-1)) and C-N-H bonds (1532 cm(-1) and 1247 cm(-1)) as confirmed by Fourier-transform infrared (FTIR) spectroscopy analysis. Gas chromatography-mass spectrometry (GC-MS) analysis revealed polyols and alkanes as PU degradation intermediates, indicating the hydrolysis of ester and urethane bonds. Esterase and urease activities were detected in 7 days-old cultures with PU as a carbon source. Transcriptome analysis showed a number of extracellular protein genes coding for enzymes such as cutinase, lipase, peroxidase and hydrophobic surface binding proteins A (HsbA) were expressed when cultivated on Impranil PU. The yeast two-hybrid assay revealed that the hydrophobic surface binding protein ChHsbA1 directly interacts with inducible esterases, ChLip1 (lipase) and ChCut1 (cutinase). Further, the KEGG pathway for "fatty acid degradation " was significantly enriched in Impranil PU inducible genes, indicating that the fungus may use the degradation intermediates to generate energy via this pathway. Taken together, our data indicates secretion of both esterase and hydrophobic surface binding proteins by C. halotolerans plays an important role in Impranil PU absorption and subsequent degradation. Our study provides a mechanistic insight into Impranil PU biodegradation by deep sea fungi and provides the basis for future development of biotechnological PU recycling.}, language = {en} } @article{PerkinsSantosRoseetal.2022, author = {Perkins, Anita K. and Santos, Isaac R. and Rose, Andrew L. and Schulz, Kai G. and Grossart, Hans-Peter and Eyre, Bradley D. and Kelaher, Brendan P. and Oakes, Joanne M.}, title = {Production of dissolved carbon and alkalinity during macroalgal wrack degradation on beaches}, series = {Biogeochemistry}, volume = {160}, journal = {Biogeochemistry}, number = {2}, publisher = {Springer}, address = {Dordrecht}, issn = {0168-2563}, doi = {10.1007/s10533-022-00946-4}, pages = {159 -- 175}, year = {2022}, abstract = {Marine macroalgae are a key primary producer in coastal ecosystems, but are often overlooked in blue carbon inventories. Large quantities of macroalgal detritus deposit on beaches, but the fate of wrack carbon (C) is little understood. If most of the wrack carbon is respired back to CO2, there would be no net carbon sequestration. However, if most of the wrack carbon is converted to bicarbonate (alkalinity) or refractory DOC, wrack deposition would represent net carbon sequestration if at least part of the metabolic products (e.g., reduced Fe and S) are permanently removed (i.e., long-term burial) and the DOC is not remineralised. To investigate the release of macroalgal C via porewater and its potential to contribute to C sequestration (blue carbon), we monitored the degradation of Ecklonia radiata in flow-through mesocosms simulating tidal flushing on sandy beaches. Over 60 days, 81\% of added E. radiata organic matter (OM) decomposed. Per 1 mol of detritus C, the degradation produced 0.48 +/- 0.34 mol C of dissolved organic carbon (DOC) (59\%) and 0.25 +/- 0.07 mol C of dissolved inorganic carbon (DIC) (31\%) in porewater, and a small amount of CO2 (0.3 +/- 0.0 mol C; ca. 3\%) which was emitted to the atmosphere. A significant amount of carbonate alkalinity was found in porewater, equating to 33\% (0.27 +/- 0.05 mol C) of the total degraded C. The degradation occurred in two phases. In the first phase (days 0-3), 27\% of the OM degraded, releasing highly reactive DOC. In the second phase (days 4-60), the labile DOC was converted to DIC. The mechanisms underlying E. radiata degradation were sulphate reduction and ammonification. It is likely that the carbonate alkalinity was primarily produced through sulphate reduction. The formation of carbonate alkalinity and semi-labile or refractory DOC from beach wrack has the potential to play an overlooked role in coastal carbon cycling and contribute to marine carbon sequestration.}, language = {en} } @article{HiltGrossartMcGinnisetal.2022, author = {Hilt, Sabine and Grossart, Hans-Peter and McGinnis, Daniel F. and Keppler, Frank}, title = {Potential role of submerged macrophytes for oxic methane production in aquatic ecosystems}, series = {Limnology and oceanography}, journal = {Limnology and oceanography}, publisher = {Wiley}, address = {Hoboken}, issn = {0024-3590}, doi = {10.1002/lno.12095}, pages = {13}, year = {2022}, abstract = {Methane (CH4) from aquatic ecosystems contributes to about half of total global CH4 emissions to the atmosphere. Until recently, aquatic biogenic CH4 production was exclusively attributed to methanogenic archaea living under anoxic or suboxic conditions in sediments, bottom waters, and wetlands. However, evidence for oxic CH4 production (OMP) in freshwater, brackish, and marine habitats is increasing. Possible sources were found to be driven by various planktonic organisms supporting different OMP mechanisms. Surprisingly, submerged macrophytes have been fully ignored in studies on OMP, yet they are key components of littoral zones of ponds, lakes, and coastal systems. High CH4 concentrations in these zones have been attributed to organic substrate production promoting classic methanogenesis in the absence of oxygen. Here, we review existing studies and argue that, similar to terrestrial plants and phytoplankton, macroalgae and submerged macrophytes may directly or indirectly contribute to CH4 formation in oxic waters. We propose several potential direct and indirect mechanisms: (1) direct production of CH4; (2) production of CH4 precursors and facilitation of their bacterial breakdown or chemical conversion; (3) facilitation of classic methanogenesis; and (4) facilitation of CH4 ebullition. As submerged macrophytes occur in many freshwater and marine habitats, they are important in global carbon budgets and can strongly vary in their abundance due to seasonal and boom-bust dynamics. Knowledge on their contribution to OMP is therefore essential to gain a better understanding of spatial and temporal dynamics of CH4 emissions and thus to substantially reduce current uncertainties when estimating global CH4 emissions from aquatic ecosystems.}, language = {en} } @misc{SchornSalmanCarvalhoLittmannetal.2019, author = {Schorn, Sina and Salman-Carvalho, Verena and Littmann, Sten and Ionescu, Danny and Grossart, Hans-Peter and Cypionka, Heribert}, title = {Cell architecture of the giant sulfur bacterium achromatium oxaliferum}, series = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {2}, issn = {1866-8372}, doi = {10.25932/publishup-54993}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-549935}, pages = {10}, year = {2019}, abstract = {Achromatium oxaliferum is a large sulfur bacterium easily recognized by large intracellular calcium carbonate bodies. Although these bodies often fill major parts of the cells' volume, their role and specific intracellular location are unclear. In this study, we used various microscopy and staining techniques to identify the cell compartment harboring the calcium carbonate bodies. We observed that Achromatium cells often lost their calcium carbonate bodies, either naturally or induced by treatments with diluted acids, ethanol, sodium bicarbonate and UV radiation which did not visibly affect the overall shape and motility of the cells (except for UV radiation). The water-soluble fluorescent dye fluorescein easily diffused into empty cavities remaining after calcium carbonate loss. Membranes (stained with Nile Red) formed a network stretching throughout the cell and surrounding empty or filled calcium carbonate cavities. The cytoplasm (stained with FITC and SYBR Green for nucleic acids) appeared highly condensed and showed spots of dissolved Ca2+ (stained with Fura-2). From our observations, we conclude that the calcium carbonate bodies are located in the periplasm, in extra-cytoplasmic pockets of the cytoplasmic membrane and are thus kept separate from the cell's cytoplasm. This periplasmic localization of the carbonate bodies might explain their dynamic formation and release upon environmental changes.}, language = {en} } @article{SchornSalmanCarvalhoLittmannetal.2019, author = {Schorn, Sina and Salman-Carvalho, Verena and Littmann, Sten and Ionescu, Danny and Grossart, Hans-Peter and Cypionka, Heribert}, title = {Cell architecture of the giant sulfur bacterium achromatium oxaliferum}, series = {FEMS Microbiology Ecology}, volume = {96}, journal = {FEMS Microbiology Ecology}, number = {2}, publisher = {Oxford University Press}, address = {Oxford}, issn = {1574-6941}, doi = {10.1093/femsec/fiz200}, pages = {1 -- 8}, year = {2019}, abstract = {Achromatium oxaliferum is a large sulfur bacterium easily recognized by large intracellular calcium carbonate bodies. Although these bodies often fill major parts of the cells' volume, their role and specific intracellular location are unclear. In this study, we used various microscopy and staining techniques to identify the cell compartment harboring the calcium carbonate bodies. We observed that Achromatium cells often lost their calcium carbonate bodies, either naturally or induced by treatments with diluted acids, ethanol, sodium bicarbonate and UV radiation which did not visibly affect the overall shape and motility of the cells (except for UV radiation). The water-soluble fluorescent dye fluorescein easily diffused into empty cavities remaining after calcium carbonate loss. Membranes (stained with Nile Red) formed a network stretching throughout the cell and surrounding empty or filled calcium carbonate cavities. The cytoplasm (stained with FITC and SYBR Green for nucleic acids) appeared highly condensed and showed spots of dissolved Ca2+ (stained with Fura-2). From our observations, we conclude that the calcium carbonate bodies are located in the periplasm, in extra-cytoplasmic pockets of the cytoplasmic membrane and are thus kept separate from the cell's cytoplasm. This periplasmic localization of the carbonate bodies might explain their dynamic formation and release upon environmental changes.}, language = {en} } @misc{MasigolKhodaparastMostowfizadehGhalamfarsaetal.2020, author = {Masigol, Hossein and Khodaparast, Seyed Akbar and Mostowfizadeh-Ghalamfarsa, Reza and Rojas-Jimenez, Keilor and Woodhouse, Jason Nicholas and Neubauer, Darshan and Grossart, Hans-Peter}, title = {Taxonomical and functional diversity of Saprolegniales in Anzali lagoon, Iran}, series = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {1}, issn = {1866-8372}, doi = {10.25932/publishup-51582}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-515820}, pages = {16}, year = {2020}, abstract = {Studies on the diversity, distribution and ecological role of Saprolegniales (Oomycota) in freshwater ecosystems are currently receiving attention due to a greater understanding of their role in carbon cycling in various aquatic ecosystems. In this study, we characterized several Saprolegniales species isolated from Anzali lagoon, Gilan province, Iran, using morphological and molecular methods. Four species of Saprolegnia were identified, including S. anisospora and S. diclina as first reports for Iran, as well as Achlya strains, which were closely related to A. bisexualis, A. debaryana and A. intricata. Evaluation of the ligno-, cellulo- and chitinolytic activities was performed using plate assay methods. Most of the Saprolegniales isolates were obtained in autumn, and nearly 50\% of the strains showed chitinolytic and cellulolytic activities. However, only a few Saprolegniales strains showed lignolytic activities. This study has important implications for better understanding the ecological niche of oomycetes, and to differentiate them from morphologically similar, but functionally different aquatic fungi in freshwater ecosystems.}, language = {en} } @article{MasigolKhodaparastMostowfizadehGhalamfarsaetal.2020, author = {Masigol, Hossein and Khodaparast, Seyed Akbar and Mostowfizadeh-Ghalamfarsa, Reza and Rojas-Jimenez, Keilor and Woodhouse, Jason Nicholas and Neubauer, Darshan and Grossart, Hans-Peter}, title = {Taxonomical and functional diversity of Saprolegniales in Anzali lagoon, Iran}, series = {Aquatic Ecology}, volume = {54}, journal = {Aquatic Ecology}, number = {1}, publisher = {Springer Science}, address = {Dordrecht}, issn = {1573-5125}, doi = {10.1007/s10452-019-09745-w}, pages = {323 -- 336}, year = {2020}, abstract = {Studies on the diversity, distribution and ecological role of Saprolegniales (Oomycota) in freshwater ecosystems are currently receiving attention due to a greater understanding of their role in carbon cycling in various aquatic ecosystems. In this study, we characterized several Saprolegniales species isolated from Anzali lagoon, Gilan province, Iran, using morphological and molecular methods. Four species of Saprolegnia were identified, including S. anisospora and S. diclina as first reports for Iran, as well as Achlya strains, which were closely related to A. bisexualis, A. debaryana and A. intricata. Evaluation of the ligno-, cellulo- and chitinolytic activities was performed using plate assay methods. Most of the Saprolegniales isolates were obtained in autumn, and nearly 50\% of the strains showed chitinolytic and cellulolytic activities. However, only a few Saprolegniales strains showed lignolytic activities. This study has important implications for better understanding the ecological niche of oomycetes, and to differentiate them from morphologically similar, but functionally different aquatic fungi in freshwater ecosystems.}, language = {en} } @article{AichnerDubbertKieletal.2022, author = {Aichner, Bernhard and Dubbert, David and Kiel, Christine and Kohnert, Katrin and Ogashawara, Igor and Jechow, Andreas and Harpenslager, Sarah-Faye and H{\"o}lker, Franz and Nejstgaard, Jens Christian and Grossart, Hans-Peter and Singer, Gabriel and Wollrab, Sabine and Berger, Stella Angela}, title = {Spatial and seasonal patterns of water isotopes in northeastern German lakes}, series = {Earth system science data : ESSD}, volume = {14}, journal = {Earth system science data : ESSD}, number = {4}, publisher = {Copernicus}, address = {G{\"o}ttingen}, issn = {1866-3508}, doi = {10.5194/essd-14-1857-2022}, pages = {1857 -- 1867}, year = {2022}, abstract = {Water stable isotopes (delta O-18 and delta H-2) were analyzed in samples collected in lakes, associated with riverine systems in northeastern Germany, throughout 2020. The dataset (Aichner et al., 2021; https://doi.org/10.1594/PANGAEA.935633) is derived from water samples collected at (a) lake shores (sampled in March and July 2020), (b) buoys which were temporarily installed in deep parts of the lake (sampled monthly from March to October 2020), (c) multiple spatially distributed spots in four selected lakes (in September 2020), and (d) the outflow of Muggelsee (sampled biweekly from March 2020 to January 2021). At shores, water was sampled with a pipette from 40-60 cm below the water surface and directly transferred into a measurement vial, while at buoys a Limnos water sampler was used to obtain samples from 1 m below the surface. Isotope analysis was conducted at IGB Berlin, using a Picarro L2130-i cavity ring-down spectrometer, with a measurement uncertainty of < 0.15 parts per thousand (delta O-18) and < 0.0 parts per thousand (delta H-2). The data give information about the vegetation period and the full seasonal isotope amplitude in the sampled lakes and about spatial isotope variability in different branches of the associated riverine systems.}, language = {en} } @article{SchellenbergReichertHardtetal.2020, author = {Schellenberg, Johannes and Reichert, Jessica and Hardt, Martin and Klingelh{\"o}fer, Ines and Morlock, Gertrud and Schubert, Patrick and Bižić, Mina and Grossart, Hans-Peter and K{\"a}mpfer, Peter and Wilke, Thomas and Glaeser, Stefanie P.}, title = {The bacterial microbiome of the long-term aquarium cultured high-microbial abundance sponge Haliclona cnidata}, series = {Frontiers in Marine Science}, volume = {7}, journal = {Frontiers in Marine Science}, publisher = {Frontiers Media}, address = {Lausanne}, issn = {2296-7745}, doi = {10.3389/fmars.2020.00266}, pages = {20}, year = {2020}, abstract = {Marine sponges host highly diverse but specific bacterial communities that provide essential functions for the sponge holobiont, including antimicrobial defense. Here, we characterized the bacterial microbiome of the marine sponge Haliclona cnidata that has been in culture in an artificial marine aquarium system. We tested the hypotheses (1) that the long-term aquarium cultured sponge H. cnidata is tightly associated with a typical sponge bacterial microbiota and (2) that the symbiotic Bacteria sustain bioactivity under harmful environmental conditions to facilitate holobiont survival by preventing pathogen invasion. Microscopic and phylogenetic analyses of the bacterial microbiota revealed that H. cnidata represents a high microbial abundance (HMA) sponge with a temporally stable bacterial community that significantly shifts with changing aquarium conditions. A 4-week incubation experiment was performed in small closed aquarium systems with antibiotic and/or light exclusion treatments to reduce the total bacterial and photosynthetically active sponge-associated microbiota to a treatment-specific resilient community. While the holobiont was severely affected by the experimental treatment (i.e., bleaching of the sponge, reduced bacterial abundance, shifted bacterial community composition), the biological defense and bacterial community interactions (i.e., quorum sensing activity) remained intact. 16S rRNA gene amplicon sequencing revealed a resilient community of 105 bacterial taxa, which remained in the treated sponges. These 105 taxa accounted for a relative abundance of 72-83\% of the bacterial sponge microbiota of non-treated sponge fragments that have been cultured under the same conditions. We conclude that a sponge-specific resilient community stays biologically active under harmful environmental conditions, facilitating the resilience of the holobiont. In H. cnidata, bacteria are located in bacteriocytes, which may have contributed to the observed phenomenon.}, language = {en} } @article{XiaoLiuWangetal.2020, author = {Xiao, Shangbin and Liu, Liu and Wang, Wei and Lorke, Andreas and Woodhouse, Jason Nicholas and Grossart, Hans-Peter}, title = {A Fast-Response Automated Gas Equilibrator (FaRAGE) for continuous in situ measurement of CH4 and CO2 dissolved in water}, series = {Hydrology and earth system sciences : HESS}, volume = {24}, journal = {Hydrology and earth system sciences : HESS}, number = {7}, publisher = {European Geosciences Union (EGU) ; Copernicus}, address = {Munich}, issn = {1027-5606}, doi = {10.5194/hess-24-3871-2020}, pages = {3871 -- 3880}, year = {2020}, abstract = {Biogenic greenhouse gas emissions, e.g., of methane (CH4) and carbon dioxide (CO2) from inland waters, contribute substantially to global warming. In aquatic systems, dissolved greenhouse gases are highly heterogeneous in both space and time. To better understand the biological and physical processes that affect sources and sinks of both CH4 and CO2, their dissolved concentrations need to be measured with high spatial and temporal resolution. To achieve this goal, we developed the Fast-Response Automated Gas Equilibrator (FaRAGE) for real-time in situ measurement of dissolved CH4 and CO2 concentrations at the water surface and in the water column. FaRAGE can achieve an exceptionally short response time (t(95\%) = 12 s when including the response time of the gas analyzer) while retaining an equilibration ratio of 62.6\% and a measurement accuracy of 0.5\% for CH4. A similar performance was observed for dissolved CO2 (t(95\%) = 10 s, equilibration ratio 67.1 \%). An equilibration ratio as high as 91.8\% can be reached at the cost of a slightly increased response time (16 s). The FaRAGE is capable of continuously measuring dissolved CO2 and CH4 concentrations in the nM-to-submM (10(-9)-10(-3) mol L-1) range with a detection limit of subnM (10(-10) mol L-1), when coupling with a cavity ring-down greenhouse gas analyzer (Picarro GasScouter). FaRAGE allows for the possibility of mapping dissolved concentration in a "quasi" three-dimensional manner in lakes and provides an inexpensive alternative to other commercial gas equilibrators. It is simple to operate and suitable for continuous monitoring with a strong tolerance for suspended particles. While the FaRAGE is developed for inland waters, it can be also applied to ocean waters by tuning the gas-water mixing ratio. The FaRAGE is easily adapted to suit other gas analyzers expanding the range of potential applications, including nitrous oxide and isotopic composition of the gases.}, language = {en} } @article{VillalbaKarnatakGrossartetal.2022, author = {Villalba, Luis Alberto and Karnatak, Rajat and Grossart, Hans-Peter and Wollrab, Sabine}, title = {Flexible habitat choice of pelagic bacteria increases system stability and energy flow through the microbial loop}, series = {Limnology and oceanography : L \& O}, volume = {67}, journal = {Limnology and oceanography : L \& O}, number = {6}, publisher = {Wiley-Blackwell}, address = {Oxford [u.a.]}, issn = {0024-3590}, doi = {10.1002/lno.12091}, pages = {1402 -- 1415}, year = {2022}, abstract = {Pelagic bacteria can be classified into free-living and particle-attached life modes, which either dwell in the water column or attach to suspended particles. Bacteria with a generalist life style, however, can actively shift between these two habitats. Globally increasing densities of natural and artificial particles enhance habitat heterogeneity, with potential consequences for system stability and trophic transfer through aquatic food webs. To better decipher the dynamics of microbial communities, we investigated the influence of adaptive vs. fixed habitat choice on species coexistence for a simplified bacterial community by analyzing a corresponding food web model, consisting of two specialist bacterial prey species (free and attached), a generalist bacterial prey species with the ability to shift between both habitats, and two protist predators, specialized on either water or particle compartment. For simplicity we assume a shared resource pool, considering particles only for colonization but not as a source for nutrients or carbon, that is, inert particles like microplastics or inorganic sediments. The model predicts coexistence on a cyclic attractor between fixed and flexible bacteria, if the costs for adaptive habitat choice can be balanced by adaptation speed. The presence of adaptive prey dampens predator-prey cycle amplitudes, contributing to system stabilization resulting in higher mean predator biomass compared to specialist prey only. Thus, in pelagic microbial systems, flexible habitat choice at the prey level has important implications for system stability and magnitude of energy flow through the microbial loop.}, language = {en} } @article{IlicicGrossart2022, author = {Ilicic, Doris and Grossart, Hans-Peter}, title = {Basal parasitic fungi in marine food webs-a mystery yet to unravel}, series = {Journal of Fungi}, volume = {8}, journal = {Journal of Fungi}, number = {2}, publisher = {MDPI}, address = {Basel}, issn = {2309-608X}, doi = {10.3390/jof8020114}, pages = {16}, year = {2022}, abstract = {Although aquatic and parasitic fungi have been well known for more than 100 years, they have only recently received increased awareness due to their key roles in microbial food webs and biogeochemical cycles. There is growing evidence indicating that fungi inhabit a wide range of marine habitats, from the deep sea all the way to surface waters, and recent advances in molecular tools, in particular metagenome approaches, reveal that their diversity is much greater and their ecological roles more important than previously considered. Parasitism constitutes one of the most widespread ecological interactions in nature, occurring in almost all environments. Despite that, the diversity of fungal parasites, their ecological functions, and, in particular their interactions with other microorganisms remain largely speculative, unexplored and are often missing from current theoretical concepts in marine ecology and biogeochemistry. In this review, we summarize and discuss recent research avenues on parasitic fungi and their ecological potential in marine ecosystems, e.g., the fungal shunt, and emphasize the need for further research.}, language = {en} } @misc{IlicicWoodhouseKarstenetal.2023, author = {Ilicic, Doris and Woodhouse, Jason and Karsten, Ulf and Zimmermann, Jonas and Wichard, Thomas and Quartino, Maria Liliana and Campana, Gabriela Laura and Livenets, Alexandra and Van den Wyngaert, Silke and Grossart, Hans-Peter}, title = {Antarctic Glacial Meltwater Impacts the Diversity of Fungal Parasites Associated With Benthic Diatoms in Shallow Coastal Zones}, series = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {1290}, issn = {1866-8372}, doi = {10.25932/publishup-57289}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-572895}, pages = {14}, year = {2023}, abstract = {Aquatic ecosystems are frequently overlooked as fungal habitats, although there is increasing evidence that their diversity and ecological importance are greater than previously considered. Aquatic fungi are critical and abundant components of nutrient cycling and food web dynamics, e.g., exerting top-down control on phytoplankton communities and forming symbioses with many marine microorganisms. However, their relevance for microphytobenthic communities is almost unexplored. In the light of global warming, polar regions face extreme changes in abiotic factors with a severe impact on biodiversity and ecosystem functioning. Therefore, this study aimed to describe, for the first time, fungal diversity in Antarctic benthic habitats along the salinity gradient and to determine the co-occurrence of fungal parasites with their algal hosts, which were dominated by benthic diatoms. Our results reveal that Ascomycota and Chytridiomycota are the most abundant fungal taxa in these habitats. We show that also in Antarctic waters, salinity has a major impact on shaping not just fungal but rather the whole eukaryotic community composition, with a diversity of aquatic fungi increasing as salinity decreases. Moreover, we determined correlations between putative fungal parasites and potential benthic diatom hosts, highlighting the need for further systematic analysis of fungal diversity along with studies on taxonomy and ecological roles of Chytridiomycota.}, language = {en} }