@phdthesis{Iqbal2023, author = {Iqbal, Zafar}, title = {Interface design and characterization for stable inorganic perovskite solar cells}, doi = {10.25932/publishup-61831}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-618315}, school = {Universit{\"a}t Potsdam}, pages = {ix, 133}, year = {2023}, abstract = {We live in an era driven by fossil fuels. The prevailing climate change suggests that we have to significantly reduce greenhouse gas emissions. The only way forward is to use renewable energy sources. Among those, solar energy is a clean, affordable, and sustainable source of energy. It has the potential to satisfy the world's energy demand in the future. However, there is a need to develop new materials that can make solar energy usable. Photovoltaics (PV) are devices that convert photon energy into electrical energy. The most commonly used solar cells are based on crystalline silicon. However, the fabrication process for silicon solar cells is technologically difficult and costly. Solar cells based on lead halide perovskites (PSCs) have emerged as a new candidate for PV applications since 2009. To date, PSCs have achieved 26\% power-conversion-efficiency (PCE) for its single junction, and 33.7\% PCE for tandem junction devices. However, there is still room for improvement in overall performance. The main challenge for the commercialization of this technology is the stability of the solar cells under operational conditions. Inorganic perovskite CsPbI3 has attracted researchers' interest due to its stability at elevated temperatures, however, inorganic perovskites also have associated challenges, e.g. phase stability, larger voltage loss compared to their organic-inorganic hybrid counterparts, and interface energy misalignment. The most efficient inorganic perovskite solar cell is stable for up to a few hundred hours while the most stable device in the field of inorganic PSCs reported so far is at 17\% PCE. This suggests the need for improvement of the interfaces for enhanced open circuit voltage (VOC), and optimization of the energy alignment at the interfaces. This dissertation presents the study on interfaces between the perovskite layer and hole transport layer (HTL) for stable CsPbI3 solar cells. The first part of the thesis presents an investigation of the CsPbI3 film annealing environment and its subsequent effects on the perovskite/HTL interface dynamics. Thin films annealed in dry air were compared with thin films annealed in ambient air. Synchrotron-based hard X-ray spectroscopy (HAXPES) measurements reveal that annealing in ambient air does not have an adverse effect; instead, those samples undergo surface band bending. This surface band modification induces changes in interface charge dynamics and, consequently, an improvement in charge extraction at the interfaces. Further, transient surface photovoltage (tr-SPV) simulations show that air-annealed samples exhibit fewer trap states compared to samples annealed in dry air. Finally, by annealing the CsPbI3 films in ambient air, a PCE of 19.8\% and Voc of 1.23 V were achieved for an n-i-p structured device. Interface engineering has emerged as a strategy to extract the charge and optimize the energy alignment in perovskite solar cells (PSCs). An interface with fewer trap states and energy band levels closer to the selective contact helps to attain improved efficiencies in PSCs. The second part of the thesis presents a design for the CsPbI3/HTM interface. In this work, an interface between CsPbI3 perovskite and its hole selective contact N2,N2,N2′,N2′,N7,N7,N7′,N7′-octakis(4-methoxyphenyl)-9,9′-spirobi[9H-fluorene]-2,2′,7,7′-tetramine(Spiro-OMeTAD), realized by trioctylphosphine oxide (TOPO), a dipole molecule is introduced. On top of a perovskite film well-passivated by n-octyl ammonium Iodide (OAI), it created an upward surface band-bending at the interface byTOPO that optimizes energy level alignment and enhances the extraction of holes from the perovskite layer to the hole transport material. Consequently, a Voc of 1.2 V and high-power conversion efficiency (PCE) of over 19\% were achieved for inorganic CsPbI3 perovskite solar cells. In addition, the work also sheds light on the interfacial charge-selectivity and the long-term stability of CsPbI3 perovskite solar cells. The third part of the thesis extends the previous studies to polymeric poly(3-hexylthiophene-2,5-diyl) (P3HT) as HTL. The CsPbI3/P3HT interface is critical due to high non-radiative recombination. This work presents a CsPbI3/P3HT interface modified with a long-chain alkyl halide molecule, n-hexyl trimethyl ammonium bromide (HTAB). This molecule largely passivates the CsPbI3 perovskite surface and improves the charge extraction across the interface. Consequently, a Voc of over 1.00 V and 14.2\% PCE were achieved for CsPbI3 with P3HT as HTM. Overall the results presented in this dissertation introduce and discuss methods to design and study the interfaces in CsPbI3-based solar cells. This study can pave the way for novel interface designs between CsPbI3 and HTM for charge extraction, efficiency and stability.}, language = {en} } @phdthesis{Chemura2023, author = {Chemura, Sitshengisiwe}, title = {Optical spectroscopy on lanthanide-modified nanomaterials for performance monitoring}, doi = {10.25932/publishup-61944}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-619443}, school = {Universit{\"a}t Potsdam}, pages = {xi, 116}, year = {2023}, abstract = {Lanthanide based ceria nanomaterials are important practical materials due to their redox properties that are useful in technology and life sciences. This PhD thesis examined various properties and potential for catalytic and bio-applications of Ln3+-doped ceria nanomaterials. Ce1-xGdxO2-y: Eu3+, gadolinium doped ceria (GDC) (0 ≤ x ≤ 0.4) nanoparticles were synthesized by flame spray pyrolysis (FSP) and studied, followed by 15 \% CexZr1-xO2-y: Eu3+|YSZ (0 ≤ x ≤ 1) nanocomposites. Furthermore, Ce1-xYb xO2-y (0.004 ≤ x ≤ 0.22) nanoparticles were synthesized by thermal decomposition and characterized. Finally, CeO2-y: Eu3+ nanoparticles were synthesized by a microemulsion method, biofunctionalized and characterized. The studies undertaken presents a novel approach to structurally elucidate ceria-based nanomaterials by way of Eu3+ and Yb3+ spectroscopy and processing the spectroscopic data with the multi-way decomposition method PARAFAC. Data sets of the three variables: excitation wavelength, emission wavelength and time were used to perform the deconvolution of spectra. GDC nanoparticles from FSP are nano-sized and of roughly cubic shape and crystal structure (Fm3̅m). Raman data revealed four vibrational modes exhibited by Gd3+ containing samples whereas CeO2-y: Eu3+ displays only two. The room temperature, time-resolved emission spectra recorded at λexcitation = 464 nm show that Gd3+ doping results in significantly altered emission spectra compared to pure ceria. The PARAFAC analysis for the pure ceria samples reveals two species; a high-symmetry species and a low-symmetry species. The GDC samples yield two low-symmetry spectra in the same experiment. High-resolution emission spectra recorded at 4 K after probing the 5D0-7F0 transition revealed additional variation in the low symmetry Eu3+ sites in pure ceria and GDC. The data of the Gd3+-containing samples indicates that the average charge density around the Eu3+ ions in the lattice is inversely related to Gd3+ and oxygen vacancy concentration. The particle crystallites of the 773 K and 1273 K annealed Yb3+ -ceria nanostructure materials are nano-sized and have a cubic fluorite structure with four Raman vibrational modes. Elemental maps clearly show that cluster formation occurs for 773 K annealed with high Yb3+ ion concentration from 15 mol \% in the ceria lattice. These clusters are destroyed with annealing to 1273 K. The emission spectra observed from room temperature and 4 K measurements for the Ce1-xYb xO2-y samples have a manifold that corresponds to the 2F5/2-2F7/2 transition of Yb3+ ions. Some small shifts are observed in the Stark splitting pattern and are induced by the variations of the crystal field influenced by where the Yb3+ ions are located in the crystal lattices in the samples. Upon mixing ceria with high Yb3+ concentrations, the 2F5/2-2F7/2 transition is also observed in the Stark splitting pattern, but the spectra consist of two broad high background dominated peaks. Annealing the nanomaterials at 1273 K for 2 h changes the spectral signature as new peaks emerge. The deconvolution yielded luminescence decay kinetics as well as the accompanying luminescence spectra of three species for each of the low Yb3+ doped ceria samples annealed at 773 K and one species for the 1273 K annealed samples. However, the ceria samples with high Yb3+ concentration annealed at the two temperatures yielded one species with lower decay times as compared to the Yb3+ doped ceria samples after PARAFAC analysis. Through the calcination of the nanocomposites at two high temperatures, the evolution of the emission patterns from specific Eu3+ lattice sites to indicate structural changes for the nanocomposites was followed. The spectroscopy results effectively complemented the data obtained from the conventional techniques. Annealing the samples at 773 K, resulted in amorphous, unordered domains whereas the TLS of the 1273 K nanocomposites reveal two distinct sites, with most red shifted Eu3+ species coming from pure Eu3+ doped ZrO2 on the YSZ support. Finally, for Eu3+ doped ceria, successful transfer from hydrophobic to water phase and subsequent biocompatibility was achieved using ssDNA. PARAFAC analysis for the Eu3+ in nanoparticles dispersed in toluene and water revealed one Eu3+ species, with slightly differing surface properties for the nanoparticles as far as the luminescence kinetics and solvent environments were concerned. Several functionalized nanoparticles conjugated onto origami triangles after hybridization were visualized by atomic force microscopy (AFM). Putting all into consideration, Eu3+ and Yb3+ spectroscopy was used to monitor the structural changes and determining the feasibility of the nanoparticle transfer into water. PARAFAC proves to be a powerful tool to analyze lanthanide spectra in crystalline solid materials and in solutions, which are characterized by numerous Stark transitions and where measurements usually yield a superposition of different emission contributions to any given spectrum.}, language = {en} } @misc{BhattacharyyaBalischewskiSperlichetal.2023, author = {Bhattacharyya, Biswajit and Balischewski, Christian and Sperlich, Eric and G{\"u}nter, Christina and Mies, Stefan and Kelling, Alexandra and Taubert, Andreas}, title = {N-Butyl Pyridinium Diiodido Argentate(I)}, series = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {1341}, issn = {1866-8372}, doi = {10.25932/publishup-60487}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-604874}, pages = {7}, year = {2023}, abstract = {A new solid-state material, N-butyl pyridinium diiodido argentate(I), is synthesized using a simple and effective one-pot approach. In the solid state, the compound exhibits 1D ([AgI2](-))(n) chains that are stabilized by the N-butyl pyridinium cation. The 1D structure is further manifested by the formation of long, needle-like crystals, as revealed from electron microscopy. As the general composition is derived from metal halide-based ionic liquids, the compound has a low melting point of 100-101 degrees C, as confirmed by differential scanning calorimetry. Most importantly, the compound has a conductivity of 10(-6) S cm(-1) at room temperature. At higher temperatures the conductivity increases and reaches to 10(-4 )S cm(-1) at 70 degrees C. In contrast to AgI, however, the current material has a highly anisotropic 1D arrangement of the ionic domains. This provides direct and tuneable access to fast and anisotropic ionic conduction. The material is thus a significant step forward beyond current ion conductors and a highly promising prototype for the rational design of highly conductive ionic solid-state conductors for battery or solar cell applications.}, language = {en} } @phdthesis{Saatchi2023, author = {Saatchi, Mersa}, title = {Study on manufacturing of multifunctional bilayer systems}, doi = {10.25932/publishup-60196}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-601968}, school = {Universit{\"a}t Potsdam}, pages = {116}, year = {2023}, abstract = {Layered structures are ubiquitous in nature and industrial products, in which individual layers could have different mechanical/thermal properties and functions independently contributing to the performance of the whole layered structure for their relevant application. Tuning each layer affects the performance of the whole layered system. Pores are utilized in various disciplines, where low density, but large surfaces are demanded. Besides, open and interconnected pores would act as a transferring channel for guest chemical molecules. The shape of pores influences compression behavior of the material. Moreover, introducing pores decreases the density and subsequently the mechanical strength. To maintain defined mechanical strength under various stress, porous structure can be reinforced by adding reinforcement agent such as fiber, filler or layered structure to bear the mechanical stress on demanded application. In this context, this thesis aimed to generate new functions in bilayer systems by combining layers having different moduli and/or porosity, and to develop suitable processing techniques to access these structures. Manufacturing processes of layered structures employ often organic solvents mostly causing environmental pollution. In this regard, the studied bilayer structures here were manufactured by processes free of organic solvents. In this thesis, three bilayer systems were studied to answer the individual questions. First, while various methods of introducing pores in melt-phase are reported for one-layer constructs with simple geometry, can such methods be applied to a bilayer structure, giving two porous layers? This was addressed with Bilayer System 1. Two porous layers were obtained from melt-blending of two different polyurethanes (PU) and polyvinyl alcohol (PVA) in a co-continuous phase followed by sequential injection molding and leaching the PVA phase in deionized water. A porosity of 50 ± 5\% with a high interconnectivity was obtained, in which the pore sizes in both layers ranged from 1 µm to 100 µm with an average of 22 µm in both layers. The obtained pores were tailored by applying an annealing treatment at relevant high temperatures of 110 °C and 130 °C, which allowed the porosity to be kept constant. The disadvantage of this system is that a maximum of 50\% porosity could be reached and removal of leaching material in the weld line section of both layers is not guaranteed. Such a construct serves as a model for bilayer porous structure for determining structure-property relationships with respect to the pore size, porosity and mechanical properties of each layer. This fabrication method is also applicable to complex geometries by designing a relevant mold for injection molding. Secondly, utilizing scCO2 foaming process at elevated temperature and pressure is considered as a green manufacturing process. Employing this method as a post-treatment can alter the history orientation of polymer chains created by previous fabrication methods. Can a bilayer structure be fabricated by a combination of sequential injection molding and scCO2 foaming process, in which a porous layer is supported by a compact layer? Such a construct (Bilayer System 2) was generated by sequential injection molding of a PCL (Tm ≈ 58 °C) layer and a PLLA (Tg ≈ 58 °C) layer. Soaking this structure in the autoclave with scCO2 at T = 45 °C and P = 100 bar led to the selective foaming of PCL with a porosity of 80\%, while the PLA layer was kept compact. The scCO2 autoclave led to the formation of a porous core and skin layer of the PCL, however, the degree of crystallinity of PLLA layer increased from 0 to 50\% at the defined temperature and pressure. The microcellular structure of PCL as well as the degree of crystallinity of PLLA were controlled by increasing soaking time. Thirdly, wrinkles on surfaces in micro/nano scale alter the properties, which are surface-related. Wrinkles are formed on a surface of a bilayer structure having a compliant substrate and a stiff thin film. However, the reported wrinkles were not reversible. Moreover, dynamic wrinkles in nano and micro scale have numerous examples in nature such as gecko foot hair offering reversible adhesion and an ability of lotus leaves for self-cleaning altering hydrophobicity of the surface. It was envisioned to imitate this biomimetic function on the bilayer structure, where self-assembly on/off patterns would be realized on the surface of this construct. In summary, developing layered constructs having different properties/functions in the individual layer or exhibiting a new function as the consequence of layered structure can give novel insight for designing layered constructs in various disciplines such as packaging and transport industry, aerospace industry and health technology.}, language = {en} } @misc{BrinkmannKoellnerMerketal.2023, author = {Brinkmann, Pia and K{\"o}llner, Nicole and Merk, Sven and Beitz, Toralf and Altenberger, Uwe and L{\"o}hmannsr{\"o}ben, Hans-Gerd}, title = {Comparison of handheld and echelle spectrometer to assess copper in ores by means of laser-induced breakdown spectroscopy (LIBS)}, series = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {1311}, issn = {1866-8372}, doi = {10.25932/publishup-58474}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-584742}, pages = {19}, year = {2023}, abstract = {Its properties make copper one of the world's most important functional metals. Numerous megatrends are increasing the demand for copper. This requires the prospection and exploration of new deposits, as well as the monitoring of copper quality in the various production steps. A promising technique to perform these tasks is Laser Induced Breakdown Spectroscopy (LIBS). Its unique feature, among others, is the ability to measure on site without sample collection and preparation. In this work, copper-bearing minerals from two different deposits are studied. The first set of field samples come from a volcanogenic massive sulfide (VMS) deposit, the second part from a stratiform sedimentary copper (SSC) deposit. Different approaches are used to analyze the data. First, univariate regression (UVR) is used. However, due to the strong influence of matrix effects, this is not suitable for the quantitative analysis of copper grades. Second, the multivariate method of partial least squares regression (PLSR) is used, which is more suitable for quantification. In addition, the effects of the surrounding matrices on the LIBS data are characterized by principal component analysis (PCA), alternative regression methods to PLSR are tested and the PLSR calibration is validated using field samples.}, language = {en} } @phdthesis{Galushchinskiy2023, author = {Galushchinskiy, Alexey}, title = {Carbon nitride: a flexible platform for net-oxidative and net-neutral photocatalysis}, doi = {10.25932/publishup-61092}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-610923}, school = {Universit{\"a}t Potsdam}, pages = {351}, year = {2023}, abstract = {Solar photocatalysis is the one of leading concepts of research in the current paradigm of sustainable chemical industry. For actual practical implementation of sunlight-driven catalytic processes in organic synthesis, a cheap, efficient, versatile and robust heterogeneous catalyst is necessary. Carbon nitrides are a class of organic semiconductors who are known to fulfill these requirements. First, current state of solar photocatalysis in economy, industry and lab research is overviewed, outlining EU project funding, prospective synthetic and reforming bulk processes, small scale solar organic chemistry, and existing reactor designs and prototypes, concluding feasibility of the approach. Then, the photocatalytic aerobic cleavage of oximes to corresponding aldehydes and ketones by anionic poly(heptazine imide) carbon nitride is discussed. The reaction provides a feasible method of deprotection and formation of carbonyl compounds from nitrosation products and serves as a convenient model to study chromoselectivity and photophysics of energy transfer in heterogeneous photocatalysis. Afterwards, the ability of mesoporous graphitic carbon nitride to conduct proton-coupled electron transfer was utilized for the direct oxygenation of 1,3-oxazolidin-2-ones to corresponding 1,3-oxazlidine-2,4-diones. This reaction provides an easier access to a key scaffold of diverse types of drugs and agrochemicals. Finally, a series of novel carbon nitrides based on poly(triazine imide) and poly(heptazine imide) structure was synthesized from cyanamide and potassium rhodizonate. These catalysts demonstrated a good performance in a set of photocatalytic benchmark reactions, including aerobic oxidation, dual nickel photoredox catalysis, hydrogen peroxide evolution and chromoselective transformation of organosulfur precursors. Concluding, the scope of carbon nitride utilization for net-oxidative and net-neutral photocatalytic processes was expanded, and a new tunable platform for catalyst synthesis was discovered.}, language = {en} } @phdthesis{Schneider2023, author = {Schneider, Helen}, title = {Reactive eutectic media based on ammonium formate for the valorization of bio-sourced materials}, doi = {10.25932/publishup-61302}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-613024}, school = {Universit{\"a}t Potsdam}, pages = {137}, year = {2023}, abstract = {In the last several decades eutectic mixtures of different compositions were successfully used as solvents for vast amount of chemical processes, and only relatively recently they were discovered to be widely spread in nature. As such they are discussed as a third liquid media of the living cell, that is composed of common cell metabolites. Such media may also incorporate water as a eutectic component in order to regulate properties such as enzyme activity or viscosity. Taking inspiration form such sophisticated use of eutectic mixtures, this thesis will explore the use of reactive eutectic media (REM) for organic synthesis. Such unconventional media are characterized by the reactivity of their components, which means that mixture may assume the role of the solvent as well as the reactant itself. The thesis focuses on novel REM based on ammonium formate and investigates their potential for the valorization of bio-sourced materials. The use of REM allows the performance of a number of solvent-free reactions, which entails the benefits of a superior atom and energy economy, higher yields and faster rates compared to reactions in solution. This is evident for the Maillard reaction between ammonium formate and various monosaccharides for the synthesis of substituted pyrazines as well as for a Leuckart type reaction between ammonium formate and levulinic acid for the synthesis of 5-methyl-2-pyrrolidone. Furthermore, reaction of ammonium formate with citric acid for the synthesis of yet undiscovered fluorophores, shows that synthesis in REM can open up unexpected reaction pathways. Another focus of the thesis is the study of water as a third component in the REM. As a result, the concept of two different dilution regimes (tertiary REM and in REM in solvent) appears useful for understanding the influence of water. It is shown that small amounts of water can be of great benefit for the reaction, by reducing viscosity and at the same time increasing reaction yields. REM based on ammonium formate and organic acids are employed for lignocellulosic biomass treatment. The thesis thereby introduces an alternative approach towards lignocellulosic biomass fractionation that promises a considerable process intensification by the simultaneous generation of cellulose and lignin as well as the production of value-added chemicals from REM components. The thesis investigates the generated cellulose and the pathway to nanocellulose generation and also includes the structural analysis of extracted lignin. Finally, the thesis investigates the potential of microwave heating to run chemical reactions in REM and describes the synergy between these two approaches. Microwave heating for chemical reactions and the use of eutectic mixtures as alternative reaction media are two research fields that are often described in the scope of green chemistry. The thesis will therefore also contain a closer inspection of this terminology and its greater goal of sustainability.}, language = {en} } @phdthesis{Michaelis2022, author = {Michaelis, Marcus}, title = {Molekulare Erkennung von Cellulose und Cellulose-Fragmenten durch Cellulose-Bindemodule \& Interaktionsstudien zwischen den zytoplasmatischen Dom{\"a}nen von Integrin-β1/β3 und dem fokalen Adh{\"a}sionsprotein Paxillin}, doi = {10.25932/publishup-55516}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-555162}, school = {Universit{\"a}t Potsdam}, pages = {VI, 171}, year = {2022}, abstract = {Proteine erf{\"u}llen bei einer Vielzahl von Prozessen eine essenzielle Rolle. Um diese Funktionsweisen zu verstehen, bedarf es der Aufkl{\"a}rung derer Struktur und deren Bindungsverhaltens mit anderen Molek{\"u}len wie Proteinen, Peptiden, Kohlenhydraten oder kleinen Molek{\"u}len. Im ersten Teil dieser Arbeit wurden der Wildtyp und die Punktmutante N126W eines Kohlenhydrat-bindenden Proteins aus dem hitzestabilen Bakterium C. thermocellum untersucht, welches Teil eines Komplexes ist, der Kohlenhydrate wie Cellulose erkennen, binden und abbauen kann. Dazu wurde dieses Protein mit E.coli Bakterien hergestellt und durch Metallchelat- und Gr{\"o}ßenausschlusschromatographie gereinigt. Die Proteine konnten isotopenmarkiert mittels Kernspinresonanz-Spektroskopie (NMR) untersucht werden. H/D-Austauschexperimente zeigten leicht und schwer zug{\"a}ngliche Stellen im Protein f{\"u}r eine m{\"o}gliche Ligandenwechselwirkung. Anschließend konnte eine Interaktion beider Proteine mit Cellulosefragmenten festgestellt werden. Diese interagieren {\"u}ber zwischenmolekulare Kr{\"a}fte mit den Seitenketten von aromatischen Aminos{\"a}uren und {\"u}ber Wasserstoffbr{\"u}ckenbindungen mit anderen Resten. Weiterhin wurde die Calcium-Bindestelle analysiert und es konnte gezeigt werden, das diese nach der Proteinherstellung mit einem Calcium-Ion besetzt ist und dieses mit dem Komplexbildner EDTA entfernbar ist, jedoch wieder reversibel besetzt werden kann. Zum Schluss wurde mittels zweier Methoden versucht (grafting from und grafting to), das Protein mit einem temperatursensorischen Polymer (Poly-N-Isopropylacrylamid) zu koppeln, um so Eigenschaften wie L{\"o}slichkeit oder Stabilit{\"a}t zu beeinflussen. Es zeigte sich, das w{\"a}hrend die grafting from Methode (Polymer w{\"a}chst direkt vom Protein) zu einer teilweisen Entfaltung und Destabilisierung des Proteins f{\"u}hrte, bei der grafting to Methode (Polymer wird separat hergestellt und dann an das Protein gekoppelt) das Protein seine Stabilit{\"a}t behielt und nur wenige Polymerketten angebaut waren. Der zweite Teil dieser Arbeit besch{\"a}ftigte sich mit der Interaktion von zwei LIM-Dom{\"a}nen des Proteins Paxillin und der zytoplasmatischen Dom{\"a}ne der Peptide Integrin-β1 und Integrin-β3. Diese spielen eine wichtige Rolle bei der Bewegung von Zellen. Dabei interagieren sie mit einer Vielzahl an anderen Proteinen, um fokale Adh{\"a}sionen (Multiproteinkomplexe) zu bilden. Bei der Herstellung des Peptids Integrin-β3 zeigte sich durch Gr{\"o}ßenausschlusschromatographie und Massenspektrometrie ein Abbau, bei dem verschiedene Aminos{\"a}uregruppen abgespalten werden. Dieser konnte durch eine Zugabe des Serinprotease-Inhibitors AEBSF verhindert werden. Anschließend wurde die direkte Interaktion der Proteine untereinander mittels NMR untersucht. Dabei zeigte sich, das Integrin-β1 und Integrin-β3 an die gleiche Position binden, n{\"a}mlich an den flexiblen Loop der LIM3-Dom{\"a}ne von Paxillin. Die Dissoziationskonstanten zeigten, dass Integrin-β1 mit einer zirka zehnfach h{\"o}heren Affinit{\"a}t im Vergleich zu Integrin-β3 an Paxillin bindet. W{\"a}hrend Paxillins Bindestelle an Integrin-β1 in der Mitte des Peptids liegt, ist bei Integrin-β3 der C-Terminus essenziell. Daher wurden die drei C-terminalen Aminos{\"a}uren entfernt und erneut Bindungsstudien durchgef{\"u}hrt, welche gezeigt haben, das die Affinit{\"a}t dadurch fast vollst{\"a}ndig unterbunden wurde. Final wurde der flexible Loop der LIM3-Dom{\"a}ne in zwei andere Aminos{\"a}uresequenzen mutiert, um die Bindung auf der Paxillin-Seite auszul{\"o}schen. Jedoch zeigten sowohl Zirkulardichroismus-Spektroskopie als auch NMR-Spektroskopie, dass die Mutationen zu einer teilweisen Entfaltung der Dom{\"a}ne gef{\"u}hrt haben und somit nicht als geeignete Kandidaten f{\"u}r diese Studien identifiziert werden konnten.}, language = {de} } @phdthesis{MichalikOnichimowska2022, author = {Michalik-Onichimowska, Aleksandra}, title = {Real-time monitoring of (photo)chemical reactions in micro flow reactors and levitated droplets by IR-MALDI ion mobility and mass spectrometry}, doi = {10.25932/publishup-55729}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-557298}, school = {Universit{\"a}t Potsdam}, pages = {v, 68}, year = {2022}, abstract = {Eine nachhaltigere chemische Industrie erfordert eine Minimierung der L{\"o}sungsmittel und Chemikalien. Daher werden Optimierung und Entwicklung chemischer Prozesse vor einer Produktion in großem Maßstab in kleinen Chargen durchgef{\"u}hrt. Der entscheidende Schritt bei diesem Ansatz ist die Skalierbarkeit von kleinen Reaktionssystemen auf große, kosteneffiziente Reaktoren. Die Vergr{\"o}ßerung des Volumens des Reaktionsmediums geht immer mit der Vergr{\"o}ßerung der Oberfl{\"a}che einher, die mit dem begrenzenden Gef{\"a}ß in Kontakt steht. Da das Volumen kubisch, w{\"a}hrend die Oberfl{\"a}che quadratisch mit zunehmendem Radius skaliert, nimmt ihr Verh{\"a}ltnis nicht linear zu. Viele an der Grenzfl{\"a}che zwischen Oberfl{\"a}che und Fl{\"u}ssigkeit auftretende Ph{\"a}nomene k{\"o}nnen die Reaktionsgeschwindigkeiten und Ausbeuten beeinflussen, was zu falschen Prognosen aufgrund der kleinskaligen Optimierung f{\"u}hrt. Die Anwendung von schwebenden Tropfen als beh{\"a}lterlose Reaktionsgef{\"a}ße bietet eine vielversprechende M{\"o}glichkeit, die oben genannten Probleme zu vermeiden. In der vorgestellten Arbeit wurde eine effiziente Kopplung von akustisch schwebenden Tropfen und IM Spektrometer f{\"u}r die Echtzeit{\"u}berwachung chemischer Reaktionen entwickelt, bei denen akustisch schwebende Tropfen als Reaktionsgef{\"a}ße fungieren. Das Design des Systems umfasst die ber{\"u}hrungslose Probenahme und Ionisierung, die durch Laserdesorption und -ionisation bei 2,94 µm realisiert wird. Der Umfang der Arbeit umfasst grundlegende Studien zum Verst{\"a}ndnis der Laserbestrahlung von Tropfen im akustischen Feld. Das Verst{\"a}ndnis dieses Ph{\"a}nomens ist entscheidend, um den Effekt der zeitlichen und r{\"a}umlichen Aufl{\"o}sung der erzeugten Ionenwolke zu verstehen, die die Aufl{\"o}sung des Systems beeinflusst. Der Aufbau umfasst eine akustische Falle, Laserbestrahlung und elektrostatische Linsen, die bei hoher Spannung unter Umgebungsdruck arbeiten. Ein effektiver Ionentransfer im Grenzfl{\"a}chenbereich zwischen dem schwebenden Tropfen und dem IMS muss daher elektrostatische und akustische Felder vollst{\"a}ndig ber{\"u}cksichtigen. F{\"u}r die Probenahme und Ionisation wurden zwei unterschiedliche Laserpulsl{\"a}ngen untersucht, n{\"a}mlich im ns- und µs-Bereich. Die Bestrahlung {\"u}ber µs-Laserpulse bietet gegen{\"u}ber ns-Pulse mehrere Vorteile: i) das Tropfenvolumen wird nicht stark beeinflusst, was es erm{\"o}glichet, nur ein kleines Volumen des Tropfens abzutasten; ii) die geringere Fluenz f{\"u}hrt zu weniger ausgepr{\"a}gten Schwingungen des im akustischen Feld eingeschlossenen Tropfens und der Tropfen wird nicht aus dem akustischen Feld r{\"u}ckgeschlagen, was zum Verlust der Probe f{\"u}hren w{\"u}rde; iii) die milde Laserbestrahlung f{\"u}hrt zu einer besseren r{\"a}umlichen und zeitlichen Begrenzung der Ionenwolken, was zu einer besseren Aufl{\"o}sung der detektierten Ionenpakete f{\"u}hrt. Schließlich erm{\"o}glicht dieses Wissen die Anwendung der Ionenoptik, die erforderlich ist, um den Ionenfluss zwischen dem im akustischen Feld suspendierten Tropfen und dem IM Spektrometer zu induzieren. Die Ionenoptik aus 2 elektrostatischen Linsen in der N{\"a}he des Tropfens erm{\"o}glicht es, die Ionenwolke effektiv zu fokussieren und direkt zum IM Spektrometer-Eingang zu f{\"u}hren. Diese neuartige Kopplung hat sich beim Nachweis einiger basischer Molek{\"u}le als erfolgreich erwiesen. Um die Anwendbarkeit des Systems zu belegen, wurde die Reaktion zwischen N-Boc Cysteine Methylester und Allylalkohol in einem Chargenreaktor durchgef{\"u}hrt und online {\"u}berwacht. F{\"u}r eine Kalibrierung wurde der Reaktionsfortschritt parallel mittels 1H-NMR verfolgt. Der beobachtete Reaktionsumsatz von mehr als 50\% innerhalb der ersten 20 Minuten demonstrierte die Eignung der Reaktion, um die Einsatzpotentiale des entwickelten Systems zu bewerten.}, language = {en} } @phdthesis{Kwesiga2022, author = {Kwesiga, George}, title = {Synthesis of isoflavonoids from African medicinal plants with activity against tropical infectious diseases}, doi = {10.25932/publishup-55906}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-559069}, school = {Universit{\"a}t Potsdam}, pages = {xxi, 175}, year = {2022}, abstract = {Two approaches for the synthesis of prenylated isoflavones were explored: the 2,3-oxidative rearrangement/cross metathesis approach, using hypervalent iodine reagents as oxidants and the Suzuki-Miyaura cross-coupling/cross metathesis approach. Three natural prenylated isoflavones: 5-deoxy-3′-prenylbiochanin A (59), erysubin F (61) and 7-methoxyebenosin (64), and non-natural analogues: 7,4′-dimethoxy-8,3′-diprenylisoflavone (126j) and 4′-hydroxy-7-methoxy-8,3′-diprenylisoflavone (128) were synthesized for the first time via the 2,3-oxidative rearrangement/cross metathesis approach, using mono- or diallylated flavanones as key intermediates. The reaction of flavanones with hypervalent iodine reagents afforded isoflavones via a 2,3-oxidative rearrangement and the corresponding flavone isomers via a 2,3-dehydrogenation. This afforded the synthesis of 7,4′-dimethoxy-8-prenylflavone (127g), 7,4′-dimethoxy-8,3′-diprenylflavone (127j), 7,4′-dihydroxy-8,3′-diprenylflavone (129) and 4′-hydroxy-7-methoxy-8,3′-diprenylflavone (130), the non-natural regioisomers of 7-methoxyebenosin, 126j, erysubin F and 128 respectively. Three natural prenylated isoflavones: 3′-prenylbiochanin A (58), neobavaisoflavone (66) and 7-methoxyneobavaisoflavone (137) were synthesized for the first time using the Suzuki-Miyaura cross-coupling/cross metathesis approach. The structures of 3′-prenylbiochanin A (58) and 5-deoxy-3′-prenylbiochanin A (59) were confirmed by single crystal X-ray diffraction analysis. The 2,3-oxidative rearrangement approach appears to be limited to the substitution pattern on both rings A and B of the flavanone while the Suzuki-Miyaura cross-coupling approach appears to be the most suitable for the synthesis of simple isoflavones or prenylated isoflavones whose prenyl substituents or allyl groups, the substituents that are essential precursors for the prenyl side chains, can be regioselectively introduced after the construction of the isoflavone core. The chalcone-flavanone hybrids 146, 147 and 148, hybrids of the naturally occurring bioactive flavanones liquiritigenin-7-methyl ether, liquiritigenin and liquiritigenin-4′-methyl ether respectively were also synthesized for the first time, using Matsuda-Heck arylation and allylic/benzylic oxidation as key steps. The intermolecular interactions of 5-deoxy-3′-prenylbiochanin A (59) and its two closely related precursors 106a and 106b was investigated by single crystal and Hirshfeld surface analyses to comprehend their different physicochemical properties. The results indicate that the presence of strong intermolecular O-H···O hydrogen bonds and an increase in the number of π-stacking interactions increases the melting point and lowers the solubility of isoflavone derivatives. However, the strong intermolecular O-H···O hydrogen bonds have a greater effect than the π-stacking interactions. 5-Deoxy-3′-prenylbiochanin A (59), erysubin F (61) and 7,4′-dihydroxy-8,3′-diprenylflavone (129), were tested against three bacterial strains and one fungal pathogen. All the three compounds were inactive against Salmonella enterica subsp. enterica (NCTC 13349), Escherichia coli (ATCC 25922), and Candida albicans (ATCC 90028), with MIC values greater than 80.0 μM. The diprenylated isoflavone erysubin F (61) and its flavone isomer 129 showed in vitro activity against methicillin-resistant Staphylococcus aureus (MRSA, ATCC 43300) at MIC values of 15.4 and 20.5 μM, respectively. 5-Deoxy-3′-prenylbiochanin A (59) was inactive against this MRSA strain. Erysubin F (61) and its flavone isomer 129 could serve as lead compounds for the development of new alternative drugs for the treatment of MRSA infections.}, language = {en} } @phdthesis{Baeckemo2022, author = {B{\"a}ckemo, Johan Dag Valentin}, title = {Digital tools and bioinspiration for the implementation in science and medicine}, doi = {10.25932/publishup-57145}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-571458}, school = {Universit{\"a}t Potsdam}, pages = {xiv, 108}, year = {2022}, abstract = {Diese Doktorarbeit untersucht anhand dreier Beispiele, wie digitale Werkzeuge wie Programmierung, Modellierung, 3D-Konstruktions-Werkzeuge und additive Fertigung in Verbindung mit einer auf Biomimetik basierenden Design\-strategie zu neuen Analysemethoden und Produkten f{\"u}hren k{\"o}nnen, die in Wissenschaft und Medizin Anwendung finden. Das Verfahren der Funkenerosion (EDM) wird h{\"a}ufig angewandt, um harte Metalle zu verformen oder zu formen, die mit normalen Maschinen nur schwer zu bearbeiten sind. In dieser Arbeit wird eine neuartige Kr{\"u}mmungsanalysemethode als Alternative zur Rauheitsanalyse vorgestellt. Um besser zu verstehen, wie sich die Oberfl{\"a}che w{\"a}hrend der Bearbeitungszeit des EDM-Prozesses ver{\"a}ndert, wurde außerdem ein digitales Schlagmodell erstellt, das auf einem urspr{\"u}nglich flachen Substrat Krater auf Erhebungen erzeugte. Es wurde festgestellt, dass ein Substrat bei etwa 10.000 St{\"o}ßen ein Gleichgewicht erreicht. Die vorgeschlagene Kr{\"u}mmungsanalysemethode hat das Potenzial, bei der Entwicklung neuer Zellkultursubstrate f{\"u}r die Stammzellenforschung eingesetzt zu werden. Zwei Arten, die in dieser Arbeit aufgrund ihrer interessanten Mechanismen analysiert wurden, sind die Venusfliegenfalle und der Bandwurm. Die Venusfliegenfalle kann ihr Maul mit einer erstaunlichen Geschwindigkeit schließen. Der Schließmechanismus kann f{\"u}r die Wissenschaft interessant sein und ist ein Beispiel f{\"u}r ein so genanntes mechanisch bi-stabiles System - es gibt zwei stabile Zust{\"a}nde. Der Bandwurm ist bei S{\"a}ugetieren meist im unteren Darm zu finden und heftet sich mit seinen Saugn{\"a}pfen an die Darmw{\"a}nde. Wenn der Bandwurm eine geeignete Stelle gefunden hat, st{\"o}ßt er seine Haken aus und heftet sich dauerhaft an die Wand. Diese Funktion k{\"o}nnte in der minimalinvasiven Medizin genutzt werden, um eine bessere Kontrolle der Implantate w{\"a}hrend des Implantationsprozesses zu erm{\"o}glichen. F{\"u}r beide Projekte wurde ein mathematisches Modell, das so genannte Chained Beam Constraint Model (CBCM), verwendet, um das nichtlineare Biegeverhalten zu modellieren und somit vorherzusagen, welche Strukturen ein mechanisch bi-stabiles Verhalten aufweisen k{\"o}nnten. Daraufhin konnten zwei Prototypen mit einem 3D-Drucker gedruckt und durch Experimente veranschaulicht werden, dass sie beide ein bi-stabiles Verhalten aufweisen. Diese Arbeit verdeutlicht das hohe Anwendungspotenzial f{\"u}r neue Analysenmethoden in der Wissenschaft und f{\"u}r neue Medizinprodukte in der minimalinvasiven Medizin.}, language = {en} } @phdthesis{Freyse2022, author = {Freyse, Daniel}, title = {Thioacetal-Bausteine f{\"u}r Fluoreszenzfarbstoffe und molekulare St{\"a}be}, doi = {10.25932/publishup-54925}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-549252}, school = {Universit{\"a}t Potsdam}, pages = {292}, year = {2022}, abstract = {Im Rahmen dieser Dissertation wurde der Sauerstoff im Grundger{\"u}st der [1,3]-Dioxolo[4.5-f]benzodioxol-Fluoreszenzfarbstoffe (DBD-Fluoreszenzfarbstoffe) vollst{\"a}ndig mit Schwefel ausgetauscht und daraus eine neue Klasse von Fluoreszenzfarbstoffen entwickelt, die Benzo[1,2-d:4,5-d']bis([1,3]dithiol)-Fluorophore (S4-DBD-Fluorophore). Insgesamt neun der besonders interessanten, difunktionalisierten Vertreter konnten synthetisiert werden, die sich in ihren elektronenziehenden Gruppen und in ihrer Anordnung unterschieden. Durch den Austausch von Sauerstoff mit Schwefel kam es zu teilweise auff{\"a}lligen Ver{\"a}nderungen in den Fluoreszenzparametern, wie eine Abnahme der Fluoreszenzquantenausbeuten und -lebenszeiten aber auch eine deutliche Rotverschiebung in den Absorptions- und Emissionswellenl{\"a}ngen mit großen STOKES-Verschiebungen. Damit sind die S4-DBD-Fluorophore eine wertvolle Erg{\"a}nzung f{\"u}r die DBD-Farbstoffe. Die Ursachen f{\"u}r die Abnahme der Lebenszeiten und Quantenausbeuten konnte auf eine hohe Besetzung des Triplett-Zustandes zur{\"u}ckgef{\"u}hrt werden, welcher durch die verst{\"a}rkten Spin-Bahn-Kopplungen des Schwefels hervorgerufen wird. Zusammen mit dem Arbeitskreis physikalische Chemie der Universit{\"a}t Potsdam konnten auch die photophysikalischen Prozesse {\"u}ber die Transienten-Absorptionsspektroskopie (TAS) aufgekl{\"a}rt werden. Eine Strategie zur Funktionalisierung der S4-DBD-Farbstoffe am Thioacetalger{\"u}st konnte entwickelt werden. So gelang es Alkohol-, Propargyl-, Azid-, NHS-Ester-, Carbons{\"a}ure-, Maleimid- und Tosyl-Gruppen an S4-DBD-Dialdehyden anzubringen. Erweiternd wurden molekulare St{\"a}be auf Basis von Schwefel-Oligo-Spiro-Ketalen (SOSKs) untersucht, bei denen Sauerstoff durch Schwefel ersetzt wurde. Hier konnten die Synthesen der l{\"o}slichkeitsvermittelnden TER-Muffe und auch des Tetrathiapentaerythritols als Grundbaustein deutlich verbessert werden. Aus diesen konnte ein einfaches SOSK-Polymer hergestellt werden. Weitere Versuche zum Aufbau eines Stabes m{\"u}ssen aber noch untersucht werden. Um einen S-OSK-Stab aufzubauen hat sich dabei die Dithiocarbonat-Gruppe in ersten Versuchen als potenzielle geeignete Schutzgruppe f{\"u}r das Tetrathiapentaerythritol herausgestellt.}, language = {de} } @phdthesis{Luedecke2022, author = {L{\"u}decke, Nils}, title = {Bio-sourced adsorbing poly(2-oxazoline)s mimicking mussel glue proteins for antifouling applications}, doi = {10.25932/publishup-54983}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-549836}, school = {Universit{\"a}t Potsdam}, pages = {iii, 224}, year = {2022}, abstract = {Nature developed countless systems for many applications. In maritime environments, several organisms established extra-ordinary mechanisms to attach to surfaces. Over the past years, the scientific interest to employ those mechanisms for coatings and long-lasting adhering materials gained significant attention. This work describes the synthesis of bio-inspired adsorbing copoly(2-oxazoline)s for surface coatings with protein repelling effects, mimicking mussel glue proteins. From a set of methoxy substituted phenyl, benzyl, and cinnamyl acids, 2-oxazoline monomers were synthesized. All synthesized 2-oxazolines were analyzed by FT-IR spectroscopy, NMR spectroscopy, and EI mass spectrometry. With those newly synthesized 2-oxazoline monomers and 2-ethyl-2-oxazoline, kinetic studies concerning homo- and copolymerization in a microwave reactor were conducted. The success of the polymerization reactions was demonstrated by FT-IR spectroscopy, NMR spectroscopy, MALDI-TOF mass spectrometry, and size exclusion chromatography (SEC). The copolymerization of 2-ethyl-2-oxazoline with a selection of methoxy-substituted 2-oxazolines resulted in water-soluble copolymers. To release the adsorbing catechol and cationic units, the copoly(2-oxazoline)s were modified. The catechol units were (partially) released by a methyl aryl ether cleavage reaction. A subsequent partial acidic hydrolysis of the ethyl unit resulted in mussel glue protein-inspired catechol and cation-containing copolymers. The modified copolymers were analyzed by NMR spectroscopy, UV-VIS spectroscopy, and SEC. The catechol- and cation-containing copolymers and their precursors were examined by a Quartz Crystal Microbalance with Dissipation (QCM-D), so study the adsorption performance on gold, borosilicate, iron, and polystyrene surfaces. An exemplary study revealed that a catechol and cation-containing copoly(2-oxazoline)-coated gold surface exhibits strong protein repelling properties.}, language = {en} } @phdthesis{Gaebert2022, author = {G{\"a}bert, Chris}, title = {Light-responsive polymer systems aiming towards programmable friction}, doi = {10.25932/publishup-55338}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-553380}, school = {Universit{\"a}t Potsdam}, pages = {XVI, 108, XXVI}, year = {2022}, abstract = {The development of novel programmable materials aiming to control friction in real-time holds potential to facilitate innovative lubrication solutions for reducing wear and energy losses. This work describes the integration of light-responsiveness into two lubricating materials, silicon oils and polymer brush surfaces. The first part focusses on the assessment on 9-anthracene ester-terminated polydimethylsiloxanes (PDMS-A) and, in particular, on the variability of rheological properties and the implications that arise with UV-light as external trigger. The applied rheometer setup contains an UV-transparent quartz-plate, which enables radiation and simultaneous measurement of the dynamic moduli. UV-A radiation (354 nm) triggers the cycloaddition reaction between the terminal functionalities of linear PDMS, resulting in chain extension. The newly-formed anthracene dimers cleave by UV-C radiation (254 nm) or at elevated temperatures (T > 130 °C). The sequential UV-A radiation and thermal reprogramming over three cycles demonstrate high conversions and reproducible programming of rheological properties. In contrast, the photochemical back reaction by UV-C is incomplete and can only partially restore the initial rheological properties. The dynamic moduli increase with each cycle in photochemical programming, presumably resulting from a chain segment re-arrangement as a result of the repeated partial photocleavage and subsequent chain length-dependent dimerization. In addition, long periods of radiation cause photooxidative degradation, which damages photo-responsive functions and consequently reduces the programming range. The absence of oxygen, however, reduces undesired side reactions. Anthracene-functionalized PDMS and native PDMS mix depending on the anthracene ester content and chain length, respectively, and allow fine-tuning of programmable rheological properties. The work shows the influence of mixing conditions during the photoprogramming step on the rheological properties, indicating that material property gradients induced by light attenuation along the beam have to be considered. Accordingly, thin lubricant films are suggested as potential application for light-programmable silicon fluids. The second part compares strategies for the grafting of spiropyran (SP) containing copolymer brushes from Si wafers and evaluates the light-responsiveness of the surfaces. Pre-experiments on the kinetics of the thermally initiated RAFT copolymerization of 2-hydroxyethyl acrylate (HEA) and spiropyran acrylate (SPA) in solution show, first, a strong retardation by SP and, second, the dependence of SPA polymerization on light. Surprisingly, the copolymerization of SPA is inhibited in the dark. These findings contribute to improve the synthesis of polar, spiropyran-containing copolymers. The comparison between initiator systems for the grafting-from approach indicates PET-RAFT superior to thermally initiated RAFT, suggesting a more efficient initiation of surface-bound CTA by light. Surface-initiated polymerization via PET-RAFT with an initiator system of EosinY (EoY) and ascorbic acid (AscA) facilitates copolymer synthesis from HEA and 5-25 mol\% SPA. The resulting polymer film with a thickness of a few nanometers was detected by atomic force microscopy (AFM) and ellipsometry. Water contact angle (CA) measurements demonstrate photo-switchable surface polarity, which is attributed to the photoisomerization between non-polar spiropyran and zwitterionic merocyanine isomer. Furthermore, the obtained spiropyran brushes show potential for further studies on light-programmable properties. In this context, it would be interesting to investigate whether swollen spiropyran-containing polymers change their configuration and thus their film thickness under the influence of light. In addition, further experiments using an AFM or microtribometer should evaluate whether light-programmable solvation enables a change in frictional properties between polymer brush surfaces.}, language = {en} } @phdthesis{Brandi2022, author = {Brandi, Francesco}, title = {Integrated biorefinery in continuous flow systems using sustainable heterogeneous catalysts}, doi = {10.25932/publishup-53766}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-537660}, school = {Universit{\"a}t Potsdam}, pages = {xii, 201}, year = {2022}, abstract = {The negative impact of crude oil on the environment has led to a necessary transition toward alternative, renewable, and sustainable resources. In this regard, lignocellulosic biomass (LCB) is a promising renewable and sustainable alternative to crude oil for the production of fine chemicals and fuels in a so-called biorefinery process. LCB is composed of polysaccharides (cellulose and hemicellulose), as well as aromatics (lignin). The development of a sustainable and economically advantageous biorefinery depends on the complete and efficient valorization of all components. Therefore, in the new generation of biorefinery, the so-called biorefinery of type III, the LCB feedstocks are selectively deconstructed and catalytically transformed into platform chemicals. For this purpose, the development of highly stable and efficient catalysts is crucial for progress toward viability in biorefinery. Furthermore, a modern and integrated biorefinery relies on process and reactor design, toward more efficient and cost-effective methodologies that minimize waste. In this context, the usage of continuous flow systems has the potential to provide safe, sustainable, and innovative transformations with simple process integration and scalability for biorefinery schemes. This thesis addresses three main challenges for future biorefinery: catalyst synthesis, waste feedstock valorization, and usage of continuous flow technology. Firstly, a cheap, scalable, and sustainable approach is presented for the synthesis of an efficient and stable 35 wt.-\% Ni catalyst on highly porous nitrogen-doped carbon support (35Ni/NDC) in pellet shape. Initially, the performance of this catalyst was evaluated for the aqueous phase hydrogenation of LCB-derived compounds such as glucose, xylose, and vanillin in continuous flow systems. The 35Ni/NDC catalyst exhibited high catalytic performances in three tested hydrogenation reactions, i.e., sorbitol, xylitol, and 2-methoxy-4-methylphenol with yields of 82 mol\%, 62 mol\%, and 100 mol\% respectively. In addition, the 35Ni/NDC catalyst exhibited remarkable stability over a long time on stream in continuous flow (40 h). Furthermore, the 35Ni/NDC catalyst was combined with commercially available Beta zeolite in a dual-column integrated process for isosorbide production from glucose (yield 83 mol\%). Finally, 35Ni/NDC was applied for the valorization of industrial waste products, namely sodium lignosulfonate (LS) and beech wood sawdust (BWS) in continuous flow systems. The LS depolymerization was conducted combining solvothermal fragmentation of water/alcohol mixtures (i.e.,methanol/water and ethanol/water) with catalytic hydrogenolysis/hydrogenation (SHF). The depolymerization was found to occur thermally in absence of catalyst with a tunable molecular weight according to temperature. Furthermore, the SHF generated an optimized cumulative yield of lignin-derived phenolic monomers of 42 mg gLS-1. Similarly, a solvothermal and reductive catalytic fragmentation (SF-RCF) of BWS was conducted using MeOH and MeTHF as a solvent. In this case, the optimized total lignin-derived phenolic monomers yield was found of 247 mg gKL-1.}, language = {en} } @phdthesis{Youk2022, author = {Youk, Sol}, title = {Molecular design of heteroatom-doped nanoporous carbons with controlled porosity and surface polarity for gas physisorption and energy storage}, doi = {10.25932/publishup-53909}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-539098}, school = {Universit{\"a}t Potsdam}, pages = {145}, year = {2022}, abstract = {The world energy consumption has constantly increased every year due to economic development and population growth. This inevitably caused vast amount of CO2 emission, and the CO2 concentration in the atmosphere keeps increasing with economic growth. To reduce CO2 emission, various methods have been developed but there are still many bottlenecks to be solved. Solvents easily absorbing CO2 such as monoethanol-amine (MEA) and diethanolamine, for example, have limitations of solvent loss, amine degradation, vulnerability to heat and toxicity, and the high cost of regeneration which is especially caused due to chemisorption process. Though some of these drawbacks can be compensated through physisorption with zeolites and metal-organic frameworks (MOFs) by displaying significant adsorption selectivity and capacity even in ambient conditions, limitations for these materials still exist. Zeolites demand relatively high regeneration energy and have limited adsorption kinetics due to the exceptionally narrow pore structure. MOFs have low stability against heat and moisture and high manufacturing cost. Nanoporous carbons have recently received attention as an attractive functional porous material due to their unique properties. These materials are crucial in many applications of modern science and industry such as water and air purification, catalysis, gas separation, and energy storage/conversion due to their high chemical and thermal stability, and in particular electronic conductivity in combination with high specific surface areas. Nanoporous carbons can be used to adsorb environmental pollutants or small gas molecules such as CO2 and to power electrochemical energy storage devices such as batteries and fuel cells. In all fields, their pore structure or electrical properties can be modified depending on their purposes. This thesis provides an in-depth look at novel nanoporous carbons from the synthetic and the application point of view. The interplay between pore structure, atomic construction, and the adsorption properties of nanoporous carbon materials are investigated. Novel nanoporous carbon materials are synthesized by using simple precursor molecules containing heteroatoms through a facile templating method. The affinity, and in turn the adsorption capacity, of carbon materials toward polar gas molecules (CO2 and H2O) is enhanced by the modification of their chemical construction. It is also shown that these properties are important in electrochemical energy storage, here especially for supercapacitors with aqueous electrolytes which are basically based on the physisorption of ions on carbon surfaces. This shows that nanoporous carbons can be a "functional" material with specific physical or chemical interactions with guest species just like zeolites and MOFs. The synthesis of sp2-conjugated materials with high heteroatom content from a mixture of citrazinic acid and melamine in which heteroatoms are already bonded in specific motives is illustrated. By controlling the removal procedure of the salt-template and the condensation temperature, the role of salts in the formation of porosity and as coordination sites for the stabilization of heteroatoms is proven. A high amount of nitrogen of up to 20 wt. \%, oxygen contents of up to 19 wt.\%, and a high CO2/N2 selectivity with maximum CO2 uptake at 273 K of 5.31 mmol g-1 are achieved. Besides, the further controlled thermal condensation of precursor molecules and advanced functional properties on applications of the synthesized porous carbons are described. The materials have different porosity and atomic construction exhibiting a high nitrogen content up to 25 wt. \% as well as a high porosity with a specific surface area of more than 1800 m2 g-1, and a high performance in selective CO2 gas adsorption of 62.7. These pore structure as well as properties of surface affect to water adsorption with a remarkably high Qst of over 100 kJ mol-1 even higher than that of zeolites or CaCl2 well known as adsorbents. In addition to that, the pore structure of HAT-CN-derived carbon materials during condensation in vacuum is fundamentally understood which is essential to maximize the utilization of porous system in materials showing significant difference in their pore volume of 0.5 cm3 g-1 and 0.25 cm3 g-1 without and with vacuum, respectively. The molecular designs of heteroatom containing porous carbon derived from abundant and simple molecules are introduced in the presented thesis. Abundant precursors that already containing high amount of nitrogen or oxygen are beneficial to achieve enhanced interaction with adsorptives. The physical and chemical properties of these heteroatom-doped porous carbons are affected by mainly two parameters, that is, the porosity from the pore structure and the polarity from the atomic composition on the surface. In other words, controlling the porosity as well as the polarity of the carbon materials is studied to understand interactions with different guest species which is a fundamental knowledge for the utilization on various applications.}, language = {en} } @phdthesis{Brinkmann2022, author = {Brinkmann, Pia}, title = {Laserinduzierte Breakdownspektroskopie zur qualitativen und quantitativen Bestimmung von Elementgehalten in geologischen Proben mittels multivariater Analysemethoden am Beispiel von Kupfer und ausgew{\"a}hlten Seltenen Erden}, doi = {10.25932/publishup-57212}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-572128}, school = {Universit{\"a}t Potsdam}, pages = {148}, year = {2022}, abstract = {Ein schonender Umgang mit den Ressourcen und der Umwelt ist wesentlicher Bestandteil des modernen Bergbaus sowie der zuk{\"u}nftigen Versorgung unserer Gesellschaft mit essentiellen Rohstoffen. Die vorliegende Arbeit besch{\"a}ftigt sich mit der Entwicklung analytischer Strategien, die durch eine exakte und schnelle Vor-Ort-Analyse den technisch-praktischen Anforderungen des Bergbauprozesses gerecht werden und somit zu einer gezielten und nachhaltigen Nutzung von Rohstofflagerst{\"a}tten beitragen. Die Analysen basieren auf den spektroskopischen Daten, die mittels der laserinduzierten Breakdownspektroskopie (LIBS) erhalten und mittels multivariater Datenanalyse ausgewertet werden. Die LIB-Spektroskopie ist eine vielversprechende Technik f{\"u}r diese Aufgabe. Ihre Attraktivit{\"a}t machen insbesondere die M{\"o}glichkeiten aus, Feldproben vor Ort ohne Probennahme oder ‑vorbereitung messen zu k{\"o}nnen, aber auch die Detektierbarkeit s{\"a}mtlicher Elemente des Periodensystems und die Unabh{\"a}ngigkeit vom Aggregatzustand. In Kombination mit multivariater Datenanalyse kann eine schnelle Datenverarbeitung erfolgen, die Aussagen zur qualitativen Elementzusammensetzung der untersuchten Proben erlaubt. Mit dem Ziel die Verteilung der Elementgehalte in einer Lagerst{\"a}tte zu ermitteln, werden in dieser Arbeit Kalibrierungs- und Quantifizierungsstrategien evaluiert. F{\"u}r die Charakterisierung von Matrixeffekten und zur Klassifizierung von Mineralen werden explorative Datenanalysemethoden angewendet. Die spektroskopischen Untersuchungen erfolgen an B{\"o}den und Gesteinen sowie an Mineralen, die Kupfer oder Seltene Erdelemente beinhalten und aus verschiedenen Lagerst{\"a}tten bzw. von unterschiedlichen Agrarfl{\"a}chen stammen. F{\"u}r die Entwicklung einer Kalibrierungsstrategie wurden sowohl synthetische als auch Feldproben von zwei verschiedenen Agrarfl{\"a}chen mittels LIBS analysiert. Anhand der Beispielanalyten Calcium, Eisen und Magnesium erfolgte die auf uni- und multivariaten Methoden beruhende Evaluierung verschiedener Kalibrierungsmethoden. Grundlagen der Quantifizierungsstrategien sind die multivariaten Analysemethoden der partiellen Regression der kleinsten Quadrate (PLSR, von engl.: partial least squares regression) und der Intervall PLSR (iPLSR, von engl.: interval PLSR), die das gesamte detektierte Spektrum oder Teilspektren in der Analyse ber{\"u}cksichtigen. Der Untersuchung liegen synthetische sowie Feldproben von Kupfermineralen zugrunde als auch solche die Seltene Erdelemente beinhalten. Die Proben stammen aus verschiedenen Lagerst{\"a}tten und weisen unterschiedliche Begleitmatrices auf. Mittels der explorativen Datenanalyse erfolgte die Charakterisierung dieser Begleitmatrices. Die daf{\"u}r angewendete Hauptkomponentenanalyse gruppiert Daten anhand von Unterschieden und Regelm{\"a}ßigkeiten. Dies erlaubt Aussagen {\"u}ber Gemeinsamkeiten und Unterschiede der untersuchten Proben im Bezug auf ihre Herkunft, chemische Zusammensetzung oder lokal bedingte Auspr{\"a}gungen. Abschließend erfolgte die Klassifizierung kupferhaltiger Minerale auf Basis der nicht-negativen Tensorfaktorisierung. Diese Methode wurde mit dem Ziel verwendet, unbekannte Proben aufgrund ihrer Eigenschaften in Klassen einzuteilen. Die Verkn{\"u}pfung von LIBS und multivariater Datenanalyse bietet die M{\"o}glichkeit durch eine Analyse vor Ort auf eine Probennahme und die entsprechende Laboranalytik weitestgehend zu verzichten und kann somit zum Umweltschutz sowie einer Schonung der nat{\"u}rlichen Ressourcen bei der Prospektion und Exploration von neuen Erzg{\"a}ngen und Lagerst{\"a}tten beitragen. Die Verteilung von Elementgehalten der untersuchten Gebiete erm{\"o}glicht zudem einen gezielten Abbau und damit eine effiziente Nutzung der mineralischen Rohstoffe.}, language = {de} } @phdthesis{Pruefert2022, author = {Pr{\"u}fert, Christian}, title = {Laser ablation and matter sizing}, doi = {10.25932/publishup-55974}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-559745}, school = {Universit{\"a}t Potsdam}, pages = {IX, 96}, year = {2022}, abstract = {The doctoral thesis presented provides a comprehensive view of laser-based ablation techniques promoted to new fields of operation, including, but not limited to, size, composition, and concentration analyses. It covers various applications of laser ablation techniques over a wide range of sizes, from single molecules all the way to aerosol particles. The research for this thesis started with broadening and deepening the field of application and the fundamental understanding of liquid-phase IR-MALDI. Here, the hybridization of ion mobility spectrometry and microfluidics was realized by using IR-MALDI as the coupling technique for the first time. The setup was used for monitoring the photocatalytic performance of the E-Z isomerization of olefins. Using this hybrid, measurement times were so drastically reduced that such photocatalyst screenings became a matter of minutes rather than hours. With this on hand, triple measurements screenings could not only be performed within ten minutes, but also with a minimum amount of resources highlighting its potential as a green chemistry alternative to batch-sized reactions. Along the optimizing process of the IR-MALDI source for microfluidics came its application for another liquid sample supply method, the hanging drop. This demarcated one of the first applications of IR-MALDI for the charging of sub-micron particles directly from suspensions via their gas-phase transfer, followed by their characterization with differential mobility analysis. Given the high spectral quality of the data up to octuply charged particles became experimentally accessible, this laid the foundation for deriving a new charge distribution model for IR-MALDI in that size regime. Moving on to even larger analyte sizes, LIBS and LII were employed as ablation techniques for the solid phase, namely the aerosol particles themselves. Both techniques produce light-emitting events and were used to quantify and classify different aerosols. The unique configuration of stroboscopic imaging, photoacoustics, LII, and LIBS measurements opened new realms for analytical synergies and their potential application in industry. The concept of using low fluences, below 100 J/cm2, and high repetition rates of up to 500 Hz for LIBS makes for an excellent phase-selective LIBS setup. This concept was combined with a new approach to the photoacoustic normalization of LIBS. Also, it was possible to acquire statistically relevant amounts of data in a matter of seconds, showing its potential as a real-time optimization technique. On the same time axis, but at much lower fluences, LII was used with a similar methodology to quickly quantify and classify airborne particles of different compositions. For the first time, aerosol particles were evaluated on their LII susceptibility by using a fluence screening approach.}, language = {en} } @phdthesis{Mazzanti2022, author = {Mazzanti, Stefano}, title = {Novel photocatalytic processes mediated by carbon nitride photocatalysis}, doi = {10.25932/publishup-54209}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-542099}, school = {Universit{\"a}t Potsdam}, pages = {418}, year = {2022}, abstract = {The key to reduce the energy required for specific transformations in a selective manner is the employment of a catalyst, a very small molecular platform that decides which type of energy to use. The field of photocatalysis exploits light energy to shape one type of molecules into others, more valuable and useful. However, many challenges arise in this field, for example, catalysts employed usually are based on metal derivatives, which abundance is limited, they cannot be recycled and are expensive. Therefore, carbon nitrides materials are used in this work to expand horizons in the field of photocatalysis. Carbon nitrides are organic materials, which can act as recyclable, cheap, non-toxic, heterogeneous photocatalysts. In this thesis, they have been exploited for the development of new catalytic methods, and shaped to develop new types of processes. Indeed, they enabled the creation of a new photocatalytic synthetic strategy, the dichloromethylation of enones by dichloromethyl radical generated in situ from chloroform, a novel route for the making of building blocks to be used for the productions of active pharmaceutical compounds. Then, the ductility of these materials allowed to shape carbon nitride into coating for lab vials, EPR capillaries, and a cell of a flow reactor showing the great potential of such flexible technology in photocatalysis. Afterwards, their ability to store charges has been exploited in the reduction of organic substrates under dark conditions, gaining new insights regarding multisite proton coupled electron transfer processes. Furthermore, the combination of carbon nitrides with flavins allowed the development of composite materials with improved photocatalytic activity in the CO2 photoreduction. Concluding, carbon nitrides are a versatile class of photoactive materials, which may help to unveil further scientific discoveries and to develop a more sustainable future.}, language = {en} } @phdthesis{Tang2022, author = {Tang, Jo Sing Julia}, title = {Biofunctional polymers for medical applications}, doi = {10.25932/publishup-56363}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-563639}, school = {Universit{\"a}t Potsdam}, pages = {III, 150, V}, year = {2022}, abstract = {Carbohydrates are found in every living organism, where they are responsible for numerous, essential biological functions and processes. Synthetic polymers with pendant saccharides, called glycopolymers, mimic natural glycoconjugates in their special properties and functions. Employing such biomimetics furthers the understanding and controlling of biological processes. Hence, glycopolymers are valuable and interesting for applications in the medical and biological field. However, the synthesis of carbohydrate-based materials can be very challenging. In this thesis, the synthesis of biofunctional glycopolymers is presented, with the focus on aqueous-based, protecting group free and short synthesis routes to further advance in the field of glycopolymer synthesis. A practical and versatile precursor for glycopolymers are glycosylamines. To maintain biofunctionality of the saccharides after their amination, regioselective functionalization was performed. This frequently performed synthesis was optimized for different sugars. The optimization was facilitated using a design of experiment (DoE) approach to enable a reduced number of necessary experiments and efficient procedure. Here, the utility of using DoE for optimizing the synthesis of glycosylamines is discussed. The glycosylamines were converted to glycomonomers which were then polymerized to yield biofunctional glycopolymers. Here, the glycopolymers were aimed to be applicable as layer-by-layer (LbL) thin film coatings for drug delivery systems. To enable the LbL technique, complimentary glycopolymer electrolytes were synthesized by polymerization of the glycomonomers and subsequent modification or by post-polymerization modification. For drug delivery, liposomes were embedded into the glycopolymer coating as potential cargo carriers. The stability as well as the integrity of the glycopolymer layers and liposomes were investigated at physiological pH range. Different glycopolymers were also synthesized to be applicable as anti-adhesion therapeutics by providing advanced architectures with multivalent presentations of saccharides, which can inhibit the binding of pathogene lectins. Here, the synthesis of glycopolymer hydrogel particles based on biocompatible poly(N-isopropylacrylamide) (NiPAm) was established using the free-radical precipitation polymerization technique. The influence of synthesis parameters on the sugar content in the gels and on the hydrogel morphology is discussed. The accessibility of the saccharides to model lectins and their enhanced, multivalent interaction were investigated. At the end of this work, the synthesis strategies for the glycopolymers are generally discussed as well as their potential application in medicine.}, language = {en} }