@misc{KabothBahrBahrZeedenetal.2021, author = {Kaboth-Bahr, Stefanie and Bahr, Andr{\´e} and Zeeden, Christian and Yamoah, Kweku A. and Lone, Mahjoor Ahmad and Chuang, Chih-Kai and L{\"o}wemark, Ludvig and Wei, Kuo-Yen}, title = {A tale of shifting relations}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, issn = {1866-8372}, doi = {10.25932/publishup-51573}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-515735}, pages = {12}, year = {2021}, abstract = {Understanding the dynamics between the East Asian summer (EASM) and winter monsoon (EAWM) is needed to predict their variability under future global warming scenarios. Here, we investigate the relationship between EASM and EAWM as well as the mechanisms driving their variability during the last 10,000 years by stacking marine and terrestrial (non-speleothem) proxy records from the East Asian realm. This provides a regional and proxy independent signal for both monsoonal systems. The respective signal was subsequently analysed using a linear regression model. We find that the phase relationship between EASM and EAWM is not time-constant and significantly depends on orbital configuration changes. In addition, changes in the Atlantic Meridional Overturning circulation, Arctic sea-ice coverage, El Ni{\~n}o-Southern Oscillation and Sun Spot numbers contributed to millennial scale changes in the EASM and EAWM during the Holocene. We also argue that the bulk signal of monsoonal activity captured by the stacked non-speleothem proxy records supports the previously argued bias of speleothem climatic archives to moisture source changes and/or seasonality.}, language = {en} } @misc{KabothBahrBahrStepaneketal.2021, author = {Kaboth-Bahr, Stefanie and Bahr, Andr{\´e} and Stepanek, Christian and Catunda, Maria Carolina Amorim and Karas, Cyrus and Ziegler, Martin and Garc{\´i}a-Gallardo, {\´A}ngela and Grunert, Patrick}, title = {Mediterranean heat injection to the North Atlantic delayed the intensification of Northern Hemisphere glaciations}, series = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {1237}, publisher = {Universit{\"a}tsverlag Potsdam}, address = {Potsdam}, issn = {1866-8372}, doi = {10.25932/publishup-54876}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-548762}, pages = {1 -- 9}, year = {2021}, abstract = {The intensification of Northern Hemisphere glaciations at the end of the Pliocene epoch marks one of the most substantial climatic shifts of the Cenozoic. Despite global cooling, sea surface temperatures in the high latitude North Atlantic Ocean rose between 2.9-2.7 million years ago. Here we present sedimentary geochemical proxy data from the Gulf of Cadiz to reconstruct the variability of Mediterranean Outflow Water, an important heat source to the North Atlantic. We find evidence for enhanced production of Mediterranean Outflow from the mid-Pliocene to the late Pliocene which we infer could have driven a sub-surface heat channel into the high-latitude North Atlantic. We then use Earth System Models to constrain the impact of enhanced Mediterranean Outflow production on the northward heat transport in the North Atlantic. In accord with the proxy data, the numerical model results support the formation of a sub-surface channel that pumped heat from the subtropics into the high latitude North Atlantic. We further suggest that this mechanism could have delayed ice sheet growth at the end of the Pliocene.}, language = {en} }