@phdthesis{Chung2013, author = {Chung, Kang Ko}, title = {Heteroatom-containing carbons for high energy density supercapacitor}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-69826}, school = {Universit{\"a}t Potsdam}, year = {2013}, abstract = {The supercapacitor is one of the most important energy storage devices as its construction allows for addressing many of the drawbacks related to batteries, but the low energy density of current systems is a major issue. In this doctoral dissertation, with a view to attaining high energy density supercapacitor systems that can be comparable to those for batteries, new heteroatom-containing carbons in the form of particles and three-dimensional films were investigated. A nitrogen-containing material, acrodam, was chosen as the carbon precursor due to the inexpensiveness, high carbonization yield, oligomerizability, etc. The carbon particles were prepared from acrodam together with caesium acetate as a meltable flux agent, and disclosed excellent properties in hydroquinone-loaded sulphuric acid electrolyte with high energy densities (up to 133.0 Wh kg-1) and sufficient cycle stabilities. These properties are already now comparable to those of batteries. Besides, conductive carbon three-dimensional films were fabricated using acrodam oligomer as the precursor by the inexpensive spin coating method. The films were found to be homogeneous, flat, void- and crack-free, and high conductivities (up to 334 S cm-1) could be obtained at the carbonization temperature of 1000 ÂșC. Furthermore, a porous carbon three-dimensional film could be formed using an organic template at the first attempt. This finding demonstrates the film's potentiality for various applications such as supercapacitor electrode; the essential absence of contact resistance within the network should contribute to effective transportation of electron within the electrode. The progress made in this dissertation will open a new way to further enhancement of energy density for supercapacitor as well as other applications that exceeds the current properties.}, language = {en} }