@phdthesis{Pavashe2017, author = {Pavashe, Prashant}, title = {Synthesis and transformations of 2-thiocarbohydrates}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-397739}, school = {Universit{\"a}t Potsdam}, pages = {xi, 132}, year = {2017}, abstract = {I. Ceric ammonium nitrate (CAN) mediated thiocyanate radical additions to glycals In this dissertation, a facile entry was developed for the synthesis of 2-thiocarbohydrates and their transformations. Initially, CAN mediated thiocyanation of carbohydrates was carried out to obtain the basic building blocks (2-thiocyanates) for the entire studies. Subsequently, 2-thiocyanates were reduced to the corresponding thiols using appropriate reagents and reaction conditions. The screening of substrates, stereochemical outcome and the reaction mechanism are discussed briefly (Scheme I). Scheme I. Synthesis of the 2-thiocyanates II and reductions to 2-thiols III \& IV. An interesting mechanism was proposed for the reduction of 2-thiocyanates II to 2-thiols III via formation of a disulfide intermediate. The water soluble free thiols IV were obtained by cleaving the thiocyanate and benzyl groups in a single step. In the subsequent part of studies, the synthetic potential of the 2-thiols was successfully expanded by simple synthetic transformations. II. Transformations of the 2-thiocarbohydrates The 2-thiols were utilized for convenient transformations including sulfa-Michael additions, nucleophilic substitutions, oxidation to disulfides and functionalization at the anomeric position. The diverse functionalizations of the carbohydrates at the C-2 position by means of the sulfur linkage are the highlighting feature of these studies. Thus, it creates an opportunity to expand the utility of 2-thiocarbohydrates for biological studies. Reagents and conditions: a) I2, pyridine, THF, rt, 15 min; b) K2CO3, MeCN, rt, 1 h; c) MeI, K2CO3, DMF, 0 °C, 5 min; d) Ac2O, H2SO4 (1 drop), rt, 10 min; e) CAN, MeCN/H2O, NH4SCN, rt, 1 h; f) NaN3, ZnBr2, iPrOH/H2O, reflux, 15 h; g) NaOH (1 M), TBAI, benzene, rt, 2 h; h) ZnCl2, CHCl3, reflux, 3 h. Scheme II. Functionalization of 2-thiocarbohydrates. These transformations have enhanced the synthetic value of 2-thiocarbohydrates for the preparative scale. Worth to mention is the Lewis acid catalyzed replacement of the methoxy group by other nucleophiles and the synthesis of the (2→1) thiodisaccharides, which were obtained with complete β-selectivity. Additionally, for the first time, the carbohydrate linked thiotetrazole was synthesized by a (3 + 2) cycloaddition approach at the C-2 position. III. Synthesis of thiodisaccharides by thiol-ene coupling. In the final part of studies, the synthesis of thiodisaccharides by a classical photoinduced thiol-ene coupling was successfully achieved. Reagents and conditions: 2,2-Dimethoxy-2-phenylacetophenone (DPAP), CH2Cl2/EtOH, hv, rt. Scheme III. Thiol-ene coupling between 2-thiols and exo-glycals. During the course of investigations, it was found that the steric hindrance plays an important role in the addition of bulky thiols to endo-glycals. Thus, we successfully screened the suitable substrates for addition of various thiols to sterically less hindered alkenes (Scheme III). The photochemical addition of 2-thiols to three different exo-glycals delivered excellent regio- and diastereoselectivities as well as yields, which underlines the synthetic potential of this convenient methodology.}, language = {en} }