@misc{AlNajiSchlaadAntonietti2020, author = {Al-Naji, Majd and Schlaad, Helmut and Antonietti, Markus}, title = {New (and old) monomers from biorefineries to make polymer chemistry more sustainable}, series = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {3}, issn = {1866-8372}, doi = {10.25932/publishup-57061}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-570614}, pages = {13}, year = {2020}, abstract = {This opinion article describes recent approaches to use the "biorefinery" concept to lower the carbon footprint of typical mass polymers, by replacing parts of the fossil monomers with similar or even the same monomer made from regrowing dendritic biomass. Herein, the new and green catalytic synthetic routes are for lactic acid (LA), isosorbide (IS), 2,5-furandicarboxylic acid (FDCA), and p-xylene (pXL). Furthermore, the synthesis of two unconventional lignocellulosic biomass derivable monomers, i.e., alpha-methylene-gamma-valerolactone (MeGVL) and levoglucosenol (LG), are presented. All those have the potential to enter in a cost-effective way, also the mass market and thereby recover lost areas for polymer materials. The differences of catalytic unit operations of the biorefinery are also discussed and the challenges that must be addressed along the synthesis path of each monomers.}, language = {en} } @misc{RajuLiebigHessetal.2019, author = {Raju, Rajarshi Roy and Liebig, Ferenc and Hess, Andreas and Schlaad, Helmut and Koetz, Joachim}, title = {Temperature-triggered reversible breakdown of polymer-stabilized olive}, series = {Postprints der Universit{\"a}t Potsdam Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam Mathematisch-Naturwissenschaftliche Reihe}, number = {751}, issn = {1866-8372}, doi = {10.25932/publishup-43646}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-436461}, pages = {19271 -- 19277}, year = {2019}, abstract = {A one-step moderate energy vibrational emulsification method was successfully employed to produce thermo-responsive olive/silicone-based Janus emulsions stabilized by poly(N,N-diethylacrylamide) carrying 0.7 mol\% oleoyl side chains. Completely engulfed emulsion droplets remained stable at room temperature and could be destabilized on demand upon heating to the transition temperature of the polymeric stabilizer. Time-dependent light micrographs demonstrate the temperature-induced breakdown of the Janus droplets, which opens new aspects of application, for instance in biocatalysis.}, language = {en} } @misc{HardyTorresRendonLealEganaetal.2017, author = {Hardy, John G. and Torres-Rendon, Jose Guillermo and Leal-Ega{\~n}a, Aldo and Walther, Andreas and Schlaad, Helmut and C{\"o}lfen, Helmut and Scheibel, Thomas R.}, title = {Biomineralization of engineered spider silk protein-based composite materials for bone tissue engineering}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-400519}, pages = {13}, year = {2017}, abstract = {Materials based on biodegradable polyesters, such as poly(butylene terephthalate) (PBT) or poly(butylene terephthalate-co-poly(alkylene glycol) terephthalate) (PBTAT), have potential application as pro-regenerative scaffolds for bone tissue engineering. Herein, the preparation of films composed of PBT or PBTAT and an engineered spider silk protein, (eADF4(C16)), that displays multiple carboxylic acid moieties capable of binding calcium ions and facilitating their biomineralization with calcium carbonate or calcium phosphate is reported. Human mesenchymal stem cells cultured on films mineralized with calcium phosphate show enhanced levels of alkaline phosphatase activity suggesting that such composites have potential use for bone tissue engineering.}, language = {en} } @misc{BehrendtSchlaad2016, author = {Behrendt, Felix Nicolas and Schlaad, Helmut}, title = {Metathesis polymerization of cystine-based macrocycles}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-395080}, pages = {4}, year = {2016}, abstract = {Macrocycles based on L-cystine were synthesized by ring-closing metathesis (RCM) and subsequently polymerized by entropy-driven ring-opening metathesis polymerization (ED-ROMP). Monomer conversion reached ∼80\% in equilibrium and the produced poly(ester-amine-disulfide-alkene)s exhibited apparent molar masses (Mappw) of up to 80 kDa and dispersities (Đ) of ∼2. The polymers can be further functionalized with acid anhydrides and degraded by reductive cleavage of the main-chain disulfide.}, language = {en} } @misc{HoogenboomSchlaad2016, author = {Hoogenboom, Richard and Schlaad, Helmut}, title = {Thermoresponsive poly(2-oxazoline)s, polypeptoids, and polypeptides}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-395022}, pages = {17}, year = {2016}, abstract = {This review covers the recent advances in the emerging field of thermoresponsive polyamides or polymeric amides, i.e., poly(2-oxazoline)s, polypeptoids, and polypeptides, with a specific focus on structure-thermoresponsive property relationships, self-assembly, and applications.}, language = {en} } @misc{VacogneSchlaad2015, author = {Vacogne, Charlotte D. and Schlaad, Helmut}, title = {Primary ammonium/tertiary amine-mediated controlled ring opening polymerisation of amino acid N-carboxyanhydrides}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-102718}, pages = {15645 -- 15648}, year = {2015}, abstract = {Stable commercial primary ammonium chlorides were combined with tertiary amines to initiate the controlled ring opening polymerisation of amino acid N-carboxyanhydrides to yield polypeptides with defined end group structure, predetermined molar mass and narrow molar mass distribution.}, language = {en} } @misc{VacogneBrosnanMasicetal.2015, author = {Vacogne, Charlotte D. and Brosnan, Sarah M. and Masic, Admir and Schlaad, Helmut}, title = {Fibrillar gels via the self-assembly of poly(L-glutamate)-based statistical copolymers}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-102289}, pages = {5040 -- 5052}, year = {2015}, abstract = {Polypeptides having secondary structures often undergo self-assembly which can extend over multiple length scales. Poly(γ-benzyl-L-glutamate) (PBLG), for example, folds into α-helices and forms physical organogels, whereas poly(L-glutamic acid) (PLGA at acidic pH) or poly(L-glutamate) (PLG at neutral/basic pH) do not form hydrogels. We explored the gelation of modified PBLG and investigated the deprotection of the carboxylic acid moieties in such gels to yield unique hydrogels. This was accomplished through photo-crosslinking gelation of poly(γ-benzyl-L-glutamate-co-allylglycine) statistical copolymers in toluene, tetrahydrofuran, and 1,4-dioxane. Unlike most polymer-based chemical gels, our gels were prepared from dilute solutions (<20 g L-1, i.e., <2\% w/v) of low molar mass polymers. Despite such low concentrations and molar masses, our dioxane gels showed high mechanical stability and little shrinkage; remarkably, they also exhibited a porous fibrillar network. Deprotection of the carboxylic acid moieties in dioxane gels yielded pH responsive and highly absorbent PLGA/PLG-based hydrogels (swelling ratio of up to 87), while preserving the network structure, which is an unprecedented feature in the context of crosslinked PLGA gels. These outstanding properties are highly attractive for biomedical materials.}, language = {en} } @misc{DoritiBrosnanWeidneretal.2016, author = {Doriti, Afroditi and Brosnan, Sarah M. and Weidner, Steffen M. and Schlaad, Helmut}, title = {Synthesis of polysarcosine from air and moisture stable N-phenoxycarbonyl-N-methylglycine assisted by tertiary amine base}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-95852}, pages = {3067 -- 3070}, year = {2016}, abstract = {Polysarcosine (Mn = 3650-20 000 g mol-1, Đ ∼ 1.1) was synthesized from the air and moisture stable N-phenoxycarbonyl-N-methylglycine. Polymerization was achieved by in situ transformation of the urethane precursor into the corresponding N-methylglycine-N-carboxyanhydride, when in the presence of a non-nucleophilic tertiary amine base and a primary amine initiator.}, language = {en} } @phdthesis{Schlaad2005, author = {Schlaad, Helmut}, title = {Polymer self-assembly : adding complexity to mesostructures of diblock copolymers by specific interactions}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-0001824}, school = {Universit{\"a}t Potsdam}, year = {2005}, abstract = {In dieser Arbeit wurde die Rolle selektiver, nicht-kovalenter Wechselwirkungen bei der Selbstorganisation von Diblockcopolymeren untersucht. Durch Einf{\"u}hrung elektrostatischer, dipolarer Wechselwirkungen oder Wasserstoffbr{\"u}ckenbindungen sollte es gelingen, komplexe Mesostrukturen zu erzeugen und die Ordnung vom Nanometerbereich auf gr{\"o}ßere L{\"a}ngenskalen auszuweiten. Diese Arbeit ist im Rahmen von Biomimetik zu sehen, da sie Konzepte der synthetischen Polymer- und Kolloidchemie und Grundprinzipien der Strukturbildung in supramolekularen und biologischen Systemen verbindet. Folgende Copolymersysteme wurden untersucht: (i) Blockionomere, (ii) Blockcopolymere mit chelatisierenden Acetoacetoxyeinheiten und (iii) Polypeptid-Blockcopolymere.}, language = {en} }