@phdthesis{MbayaMani2017, author = {Mbaya Mani, Christian}, title = {Functional nanoporous carbon-based materials derived from oxocarbon-metal coordination complexes}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-407866}, school = {Universit{\"a}t Potsdam}, pages = {IV, 135}, year = {2017}, abstract = {Nanoporous carbon based materials are of particular interest for both science and industry due to their exceptional properties such as a large surface area, high pore volume, high electroconductivity as well as high chemical and thermal stability. Benefiting from these advantageous properties, nanoporous carbons proved to be useful in various energy and environment related applications including energy storage and conversion, catalysis, gas sorption and separation technologies. The synthesis of nanoporous carbons classically involves thermal carbonization of the carbon precursors (e.g. phenolic resins, polyacrylonitrile, poly(vinyl alcohol) etc.) followed by an activation step and/or it makes use of classical hard or soft templates to obtain well-defined porous structures. However, these synthesis strategies are complicated and costly; and make use of hazardous chemicals, hindering their application for large-scale production. Furthermore, control over the carbon materials properties is challenging owing to the relatively unpredictable processes at the high carbonization temperatures. In the present thesis, nanoporous carbon based materials are prepared by the direct heat treatment of crystalline precursor materials with pre-defined properties. This synthesis strategy does not require any additional carbon sources or classical hard- or soft templates. The highly stable and porous crystalline precursors are based on coordination compounds of the squarate and croconate ions with various divalent metal ions including Zn2+, Cu2+, Ni2+, and Co2+, respectively. Here, the structural properties of the crystals can be controlled by the choice of appropriate synthesis conditions such as the crystal aging temperature, the ligand/metal molar ratio, the metal ion, and the organic ligand system. In this context, the coordination of the squarate ions to Zn2+ yields porous 3D cube crystalline particles. The morphology of the cubes can be tuned from densely packed cubes with a smooth surface to cubes with intriguing micrometer-sized openings and voids which evolve on the centers of the low index faces as the crystal aging temperature is raised. By varying the molar ratio, the particle shape can be changed from truncated cubes to perfect cubes with right-angled edges. These crystalline precursors can be easily transformed into the respective carbon based materials by heat treatment at elevated temperatures in a nitrogen atmosphere followed by a facile washing step. The resulting carbons are obtained in good yields and possess a hierarchical pore structure with well-organized and interconnected micro-, meso- and macropores. Moreover, high surface areas and large pore volumes of up to 1957 m2 g-1 and 2.31 cm3 g-1 are achieved, respectively, whereby the macroscopic structure of the precursors is preserved throughout the whole synthesis procedure. Owing to these advantageous properties, the resulting carbon based materials represent promising supercapacitor electrode materials for energy storage applications. This is exemplarily demonstrated by employing the 3D hierarchical porous carbon cubes derived from squarate-zinc coordination compounds as electrode material showing a specific capacitance of 133 F g-1 in H2SO4 at a scan rate of 5 mV s-1 and retaining 67\% of this specific capacitance when the scan rate is increased to 200 mV s-1. In a further application, the porous carbon cubes derived from squarate-zinc coordination compounds are used as high surface area support material and decorated with nickel nanoparticles via an incipient wetness impregnation. The resulting composite material combines a high surface area, a hierarchical pore structure with high functionality and well-accessible pores. Moreover, owing to their regular micro-cube shape, they allow for a good packing of a fixed-bed flow reactor along with high column efficiency and a minimized pressure drop throughout the packed reactor. Therefore, the composite is employed as heterogeneous catalyst in the selective hydrogenation of 5-hydroxymethylfurfural to 2,5-dimethylfuran showing good catalytic performance and overcoming the conventional problem of column blocking. Thinking about the rational design of 3D carbon geometries, the functions and properties of the resulting carbon-based materials can be further expanded by the rational introduction of heteroatoms (e.g. N, B, S, P, etc.) into the carbon structures in order to alter properties such as wettability, surface polarity as well as the electrochemical landscape. In this context, the use of crystalline materials based on oxocarbon-metal ion complexes can open a platform of highly functional materials for all processes that involve surface processes.}, language = {en} } @phdthesis{Herbrich2017, author = {Herbrich, Marcus}, title = {Einfluss der erosionsbedingten Pedogenese auf den Wasserund Stoffhaushalt ackerbaulich genutzter B{\"o}den der Grundmor{\"a}nenbodenlandschaft NO-Deutschlands - hydropedologische Untersuchungen mittels w{\"a}gbarer Pr{\"a}zisionslysimeter}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-408561}, school = {Universit{\"a}t Potsdam}, pages = {186}, year = {2017}, abstract = {In the arable soil landscape of hummocky ground moraines, an erosion-affected spatial differentiation of soils can be observed. Man-made erosion leads to soil profile modifications along slopes with changed solum thickness and modified properties of soil horizons due to water erosion in combination with tillage operations. Soil erosion creates, thereby, spatial patterns of soil properties (e.g., texture and organic matter content) and differences in crop development. However, little is known about the manner in which water fluxes are affected by soil-crop interactions depending on contrasting properties of differently-developed soil horizons and how water fluxes influence the carbon transport in an eroded landscape. To identify such feedbacks between erosion-induced soil profile modifications and the 1D-water and solute balance, high-precision weighing lysimeters equipped with a wide range of sensor technique were filled with undisturbed soil monoliths that differed in the degree of past soil erosion. Furthermore, lysimeter effluent concentrations were analyzed for dissolved carbon fractions in bi-weekly intervals. The water balance components measured by high precision lysimeters varied from the most eroded to the less eroded monolith up to 83 \% (deep drainage) primarily caused due to varying amounts of precipitation and evapotranspiration for a 3-years period. Here, interactions between crop development and contrasting rainfall interception by above ground biomass could explain differences in water balance components. Concentrations of dissolved carbon in soil water samples were relatively constant in time, suggesting carbon leaching was mainly affected by water fluxes in this observation period. For the lysimeter-based water balance analysis, a filtering scheme was developed considering temporal autocorrelation. The minute-based autocorrelation analysis of mass changes from lysimeter time series revealed characteristic autocorrelation lengths ranging from 23 to 76 minutes. Thereby, temporal autocorrelation provided an optimal approximation of precipitation quantities. However, the high temporal resolution in lysimeter time series is restricted by the lengths of autocorrelation. Erosion-induced but also gradual changes in soil properties were reflected by dynamics of soil water retention properties in the lysimeter soils. Short-term and long-term hysteretic water retention data suggested seasonal wettability problems of soils increasingly limited rewetting of previously dried pore regions. Differences in water retention were assigned to soil tillage operations and the erosion history at different slope positions. The threedimensional spatial pattern of soil types that result from erosional soil profile modifications were also reflected in differences of crop root development at different landscape positions. Contrasting root densities revealed positive relations of root and aboveground plant characteristics. Differences in the spatially-distributed root growth between different eroded soil types provided indications that root development was affected by the erosion-induced soil evolution processes. Overall, the current thesis corroborated the hypothesis that erosion-induced soil profile modifications affect the soil water balance, carbon leaching and soil hydraulic properties, but also the crop root system is influenced by erosion-induced spatial patterns of soil properties in the arable hummocky post glacial soil landscape. The results will help to improve model predictions of water and solute movement in arable soils and to understand interactions between soil erosion and carbon pathways regarding sink-or-source terms in landscapes.}, language = {en} } @phdthesis{Golly2017, author = {Golly, Antonius}, title = {Formation and evolution of channel steps and their role for sediment dynamics in a steep mountain stream}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-411728}, school = {Universit{\"a}t Potsdam}, pages = {180}, year = {2017}, abstract = {Steep mountain channels are an important component of the fluvial system. On geological timescales, they shape mountain belts and counteract tectonic uplift by erosion. Their channels are strongly coupled to hillslopes and they are often the main source of sediment transported downstream to low-gradient rivers and to alluvial fans, where commonly settlements in mountainous areas are located. Hence, mountain streams are the cause for one of the main natural hazards in these regions. Due to climate change and a pronounced populating of mountainous regions the attention given to this threat is even growing. Although quantitative studies on sediment transport have significantly advanced our knowledge on measuring and calibration techniques we still lack studies of the processes within mountain catchments. Studies examining the mechanisms of energy and mass exchange on small temporal and spatial scales in steep streams remain sparse in comparison to low-gradient alluvial channels. In the beginning of this doctoral project, a vast amount of experience and knowledge of a steep stream in the Swiss Prealps had to be consolidated in order to shape the principal aim of this research effort. It became obvious, that observations from within the catchment are underrepresented in comparison to experiments performed at the catchment's outlet measuring fluxes and the effects of the transported material. To counteract this imbalance, an examination of mass fluxes within the catchment on the process scale was intended. Hence, this thesis is heavily based on direct field observations, which are generally rare in these environments in quantity and quality. The first objective was to investigate the coupling of the channel with surrounding hillslopes, the major sources of sediment. This research, which involved the monitoring of the channel and adjacent hillslopes, revealed that alluvial channel steps play a key role in coupling of channel and hillslopes. The observations showed that hillslope stability is strongly associated with the step presence and an understanding of step morphology and stability is therefore crucial in understanding sediment mobilization. This finding refined the way we think about the sediment dynamics in steep channels and motivated continued research of the step dynamics. However, soon it became obvious that the technological basis for developing field tests and analyzing the high resolution geometry measured in the field was not available. Moreover, for many geometrical quantities in mountain channels definitions and a clear scientific standard was not available. For example, these streams are characterized by a high spatial variability of the channel banks, preventing straightforward calculations of the channel width without a defined reference. Thus, the second and inevitable part of this thesis became the development and evaluation of scientific tools in order to investigate the geometrical content of the study reach thoroughly. The developed framework allowed the derivation of various metrics of step and channel geometry which facilitated research on the a large data set of observations of channel steps. In the third part, innovative, physically-based metrics have been developed and compared to current knowledge on step formation, suggested in the literature. With this analyses it could be demonstrated that the formation of channel steps follow a wide range of hydraulic controls. Due to the wide range of tested parameters channel steps observed in a natural stream were attributed to different mechanisms of step formation, including those based on jamming and those based on key-stones. This study extended our knowledge on step formation in a steep stream and harmonized different, often time seen as competing, processes of step formation. This study was based on observations collected at one point in time. In the fourth part of this project, the findings of the snap-shot observations were extended in the temporal dimension and the derived concepts have been utilized to investigate reach-scale step patterns in response to large, exceptional flood events. The preliminary results of this work based on the long-term analyses of 7 years of long profile surveys showed that the previously observed channel-hillslope mechanism is the responsible for the short-term response of step formation. The findings of the long-term analyses of step patterns drew a bow to the initial observations of a channel-hillslope system which allowed to join the dots in the dynamics of steep stream. Thus, in this thesis a broad approach has been chosen to gain insights into the complex system of steep mountain rivers. The effort includes in situ field observations (article I), the development of quantitative scientific tools (article II), the reach-scale analyses of step-pool morphology (article III) and its temporal evolution (article IV). With this work our view on the processes within the catchment has been advanced towards a better mechanistic understanding of these fluvial system relevant to improve applied scientific work.}, language = {en} }