@phdthesis{Chea2022, author = {Chea, Sany}, title = {Glycomaterials: From synthesis of glycoconjugates to potential biomedical applications}, doi = {10.25932/publishup-57424}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-574240}, school = {Universit{\"a}t Potsdam}, pages = {XVII, 217}, year = {2022}, abstract = {The importance of carbohydrate structures is enormous due to their ubiquitousness in our lives. The development of so-called glycomaterials is the result of this tremendous significance. These are not exclusively used for research into fundamental biological processes, but also, among other things, as inhibitors of pathogens or as drug delivery systems. This work describes the development of glycomaterials involving the synthesis of glycoderivatives, -monomers and -polymers. Glycosylamines were synthesized as precursors in a single synthesis step under microwave irradiation to significantly shorten the usual reaction time. Derivatization at the anomeric position was carried out according to the methods developed by Kochetkov and Likhorshetov, which do not require the introduction of protecting groups. Aminated saccharide structures formed the basis for the synthesis of glycomonomers in β-configuration by methacrylation. In order to obtain α-Man-based monomers for interactions with certain α-Man-binding lectins, a monomer synthesis by Staudinger ligation was developed in this work, which also does not require protective groups. Modification of the primary hydroxyl group of a saccharide was accomplished by enzyme-catalyzed synthesis. Ribose-containing cytidine was transesterified using the lipase Novozym 435 and microwave irradiation. The resulting monomer synthesis was optimized by varying the reaction partners. To create an amide bond instead of an ester bond, protected cytidine was modified by oxidation followed by amide coupling to form the monomer. This synthetic route was also used to isolate the monomer from its counterpart guanosine. After obtaining the nucleoside-based monomers, they were block copolymerized using the RAFT method. Pre-synthesized pHPMA served as macroCTA to yield cytidine- or guanosine-containing block copolymer. These isolated block copolymers were then investigated for their self-assembly behavior using UV-Vis, DLS and SEM to serve as a potential thermoresponsive drug delivery system.}, language = {en} } @phdthesis{Miasnikova2012, author = {Miasnikova, Anna}, title = {New hydrogel forming thermo-responsive block copolymers of increasing structural complexity}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-59953}, school = {Universit{\"a}t Potsdam}, year = {2012}, abstract = {This work describes the synthesis and characterization of stimuli-responsive polymers made by reversible addition-fragmentation chain transfer (RAFT) polymerization and the investigation of their self-assembly into "smart" hydrogels. In particular the hydrogels were designed to swell at low temperature and could be reversibly switched to a collapsed hydrophobic state by rising the temperature. Starting from two constituents, a short permanently hydrophobic polystyrene (PS) block and a thermo-responsive poly(methoxy diethylene glycol acrylate) (PMDEGA) block, various gelation behaviors and switching temperatures were achieved. New RAFT agents bearing tert-butyl benzoate or benzoic acid groups, were developed for the synthesis of diblock, symmetrical triblock and 3-arm star block copolymers. Thus, specific end groups were attached to the polymers that facilitate efficient macromolecular characterization, e.g by routine 1H-NMR spectroscopy. Further, the carboxyl end-groups allowed functionalizing the various polymers by a fluorophore. Because reports on PMDEGA have been extremely rare, at first, the thermo-responsive behavior of the polymer was investigated and the influence of factors such as molar mass, nature of the end-groups, and architecture, was studied. The use of special RAFT agents enabled the design of polymer with specific hydrophobic and hydrophilic end-groups. Cloud points (CP) of the polymers proved to be sensitive to all molecular variables studied, namely molar mass, nature and number of the end-groups, up to relatively high molar masses. Thus, by changing molecular parameters, CPs of the PMDEGA could be easily adjusted within the physiological interesting range of 20 to 40°C. A second responsivity, namely to light, was added to the PMDEGA system via random copolymerization of MDEGA with a specifically designed photo-switchable azobenzene acrylate. The composition of the copolymers was varied in order to determine the optimal conditions for an isothermal cloud point variation triggered by light. Though reversible light-induced solubility changes were achieved, the differences between the cloud points before and after the irradiation were small. Remarkably, the response to light differed from common observations for azobenzene-based systems, as CPs decreased after UV-irradiation, i.e with increasing content of cis-azobenzene units. The viscosifying and gelling abilities of the various block copolymers made from PS and PMDEGA blocks were studied by rheology. Important differences were observed between diblock copolymers, containing one hydrophobic PS block only, the telechelic symmetrical triblock copolymers made of two associating PS termini, and the star block copolymers having three associating end blocks. Regardless of their hydrophilic block length, diblock copolymers PS11 PMDEGAn were freely flowing even at concentrations as high as 40 wt. \%. In contrast, all studied symmetrical triblock copolymers PS8-PMDEGAn-PS8 formed gels at low temperatures and at concentrations as low as 3.5 wt. \% at best. When heated, these gels underwent a gel-sol transition at intermediate temperatures, well below the cloud point where phase separation occurs. The gel-sol transition shifted to markedly higher transition temperatures with increasing length of the hydrophilic inner block. This effect increased also with the number of arms, and with the length of the hydrophobic end blocks. The mechanical properties of the gels were significantly altered at the cloud point and liquid-like dispersions were formed. These could be reversibly transformed into hydrogels by cooling. This thesis demonstrates that high molar mass PMDEGA is an easily accessible, presumably also biocompatible and at ambient temperature well water-soluble, non-ionic thermo-responsive polymer. PMDEGA can be easily molecularly engineered via the RAFT method, implementing defined end-groups, and producing different, also complex, architectures, such as amphiphilic triblock and star block copolymers, having an analogous structure to associative telechelics. With appropriate design, such amphiphilic copolymers give way to efficient, "smart" viscosifiers and gelators displaying tunable gelling and mechanical properties.}, language = {en} } @phdthesis{Hechenbichler2021, author = {Hechenbichler, Michelle}, title = {New thermoresponsive amphiphilic block copolymers with unconventional chemical structure and architecture}, doi = {10.25932/publishup-54182}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-541822}, school = {Universit{\"a}t Potsdam}, pages = {XIX, 186}, year = {2021}, abstract = {Das Aggregationsverhalten von amphiphilen Blockcpoolymeren ist wichtig f{\"u}r zahlreiche Anwendungen, beispielsweise in der Waschmittelindustrie als Verdicker oder in der Pharmazie zur kontrollierten Freisetzung von Wirkstoffen. Wenn einer der Bl{\"o}cke thermoresponsiv ist, kann das Aggregationsverhalten zus{\"a}tzlich {\"u}ber die Temperatur gesteuert werden. W{\"a}hrend sich die bisherigen Untersuchungen solcher „intelligenten" Systeme zumeist auf einfache Diblockcopolymere beschr{\"a}nkt haben, wurde in der vorliegenden Arbeit die Komplexit{\"a}t der Polymere und damit die Vielseitigkeit dieser Systeme erh{\"o}ht. Dazu wurden spezifische Monomere, verschiedene Blockl{\"a}ngen, unterschiedliche Architekturen und zus{\"a}tzliche funktionelle Gruppen eingef{\"u}hrt. Durch systematische {\"A}nderungen wurde das Struktur-Wirkungsverhalten solcher thermoresponsiver amphiphiler Blockcopolymere untersucht. Dabei sind die Blockcopolymere typischerweise aus einem permanent hydrophoben „Sticker", einem permanent hydrophilen Block sowie einem thermoresponsiven Block, der ein Lower Critical Solution Temperature (LCST) Verhalten zeigt, aufgebaut. W{\"a}hrend der permanent hydrophile Block aus N,N Dimethylacrylamid (DMAm) bestand, wurden f{\"u}r den thermoresponsiven Block unterschiedliche Monomere, n{\"a}mlich N n Propylacrylamid (NPAm), N iso Propylacrylamid (NiPAm), N,N Diethylacrylamid (DEAm), N,N Bis(2 methoxyethyl)acrylamid (bMOEAm), oder N Acryloylpyrrolidin (NAP) mit entsprechend unterschiedlichen LCSTs von 25, 32, 33, 42 und 56 °C verwendet. Die Blockcopolymere wurden mittels aufeinanderfolgender reversibler Additions-Fragmentierungs-Ketten{\"u}bertragungspolymerisation (RAFT Polymerisation) hergestellt, um Polymere mit linearer, doppelt hydrophober sowie symmetrischer Quasi Miktoarm Architektur zu erhalten. Dabei wurden wohldefinierte Blockgr{\"o}ßen, Endgruppen und enge Molmassenverteilungen (Ɖ ≤ 1.3) erzielt. F{\"u}r komplexere Architekturen, wie die doppelt thermoresponsive und die nicht symmetrische Quasi Miktoarm Architekturen, wurde RAFT mit Atomtransfer-Radikalpolymerisation (ATRP) oder Single Unit Monomer Insertion (SUMI), kombiniert. Die dabei erhaltenen Blockcopolymere hatten ebenfalls wohldefinierte Blockl{\"a}ngen, allerdings war die Molmassenverteilung generell breiter (Ɖ ≤ 1.8) und Endgruppen gingen zum Teil verloren, da komplexere Syntheseschritte n{\"o}tig waren. Das thermoresponsive Verhalten in w{\"a}ssriger L{\"o}sung wurde mittels Tr{\"u}bungspunktmessung und Dynamischer Lichtstreuung (DLS) untersucht. Unterhalb der Phasen{\"u}berganstemperatur waren die Polymere l{\"o}slich in Wasser und mizellare Strukturen waren in der DLS sichtbar. Oberhalb der Phasen{\"u}bergangstemperatur war das Aggregationsverhalten dann stark abh{\"a}ngig von der Architektur und der chemischen Struktur des thermoresponsiven Blocks. Thermoresponsive Bl{\"o}cke aus PNAP und PbMOEAm mit einer Blockl{\"a}nge von DPn = 40 zeigten keinen Tr{\"u}bungspunkt (CP) bis hin zu 80 °C, da durch den angebrachten hydrophilen PDMAm Block die bereits hohe LCST der entsprechenden Homopolymere bei den Blockcopolymeren weiter erh{\"o}ht wurde. Blockcopolymere mit PNiPAm, PDEAm und PNPAm hinggeen zeigten abh{\"a}ngig von der Architektur und Blockgr{\"o}ße unterschiedliche CP's. Oberhalb der CP's waren gr{\"o}ßere Aggregate vor allem f{\"u}r die Blockcopolymere mit PNiPAm und PDEAm sichtbar, wohingegen der Phasen{\"u}bergang f{\"u}r Blockcopolymere mit PNPAm stark abh{\"a}ngig von der jeweiligen Architektur war und entsprechend kleinere oder gr{\"o}ßere Aggregate zeigte. Um das Aggregationsverhalten besser zu verstehen, wurden Fluoreszenzstudien an PDMAm und PNiPAm Homo und Blockcopolymeren mit linearer Architektur durchgef{\"u}hrt, welche mit komplement{\"a}ren Fluoreszenzfarbstoffen an den entgegengesetzten Kettenenden funktionalisiert wurden. Das thermoresponsive Verhalten wurde dabei sowohl in Wasser als auch in {\"O}l-in-Wasser Mikroemulsion untersucht. Die Ergebnisse zeigten, dass das Blockcopolymer sich, {\"a}hnlich wie die anderen hergestellten Architekturen, bei niedrigen Temperaturen wie ein Polymertensid verh{\"a}lt. Dabei bilden die hydrophoben Stickergruppen den Kern und die hydrophilen Arme die Corona der Mizelle. Oberhalb des Phasen{\"u}bergangs des PNiPAm Blocks verhielten sich die Blockcopolymere allerdings wie assoziative Telechele mit zwei nicht symmetrischen hydrophoben Endgruppen, die sich untereinander nicht mischten. Daher bildeten die Blockcopolymere anstatt aggregierter „Blumen"-Mizellen gr{\"o}ßere, dynamische Aggregate. Diese sind einerseits {\"u}ber die urspr{\"u}nglichen Mizellkerne bestehend aus den hydrophoben Sticker als auch {\"u}ber Cluster der kollabierten thermoresponsiven Bl{\"o}cke miteinander verkn{\"u}pft. In Mikroemulsion ist diese Art der Netzwerkbildung noch st{\"a}rker ausgepr{\"a}gt.}, language = {en} } @phdthesis{Robinson2013, author = {Robinson, Joshua Wayne}, title = {Novel Poly(N-substituted glycine)s : synthesis, post-modification, and physical properties}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-64789}, school = {Universit{\"a}t Potsdam}, year = {2013}, abstract = {Various synthetic approaches were explored towards the preparation of poly(N-substituted glycine) homo/co-polymers (a.k.a. polypeptoids). In particular, monomers that would facilitate in the preparation of bio-relevant polymers via either chain- or step-growth polymerization were targeted. A 3-step synthetic approach towards N-substituted glycine N-carboxyanhydrides (NNCA) was implemented, or developed, and optimized allowing for an efficient gram scale preparation of the aforementioned monomer (chain-growth). After exploring several solvents and various conditions, a reproducible and efficient ring-opening polymerization (ROP) of NNCAs was developed in benzonitrile (PhCN). However, achieving molecular weights greater than 7 kDa required longer reaction times (>4 weeks) and sub-sequentially allowed for undesirable competing side reactions to occur (eg. zwitterion monomer mechanisms). A bulk-polymerization strategy provided molecular weights up to 11 kDa within 24 hours but suffered from low monomer conversions (ca. 25\%). Likewise, a preliminary study towards alcohol promoted ROP of NNCAs suffered from impurities and a suspected alternative activated monomer mechanism (AAMM) providing poor inclusion of the initiator and leading to multi-modal dispersed polymeric systems. The post-modification of poly(N-allyl glycine) via thiol-ene photo-addition was observed to be quantitative, with the utilization of photo-initiators, and facilitated in the first glyco-peptoid prepared under environmentally benign conditions. Furthermore, poly(N-allyl glycine) demonstrated thermo-responsive behavior and could be prepared as a semi-crystalline bio-relevant polymer from solution (ie. annealing). Initial efforts in preparing these polymers via standard poly-condensation protocols were insufficient (step-growth). However, a thermally induced side-product, diallyl diketopiperazine (DKP), afforded the opportunity to explore photo-induced thiol-ene and acyclic diene metathesis (ADMET) polymerizations. Thiol-ene polymerization readily led to low molecular weight polymers (<2.5 kDa), that were insoluble in most solvents except heated amide solvents (ie. DMF), whereas ADMET polymerization, with diallyl DKP, was unsuccessful due to a suspected 6 member complexation/deactivation state of the catalyst. This understanding prompted the preparation of elongated DKPs most notably dibutenyl DKP. SEC data supports the aforementioned understanding but requires further optimization studies in both the preparation of the DKP monomers and following ADMET polymerization. This work was supported by NMR, GC-MS, FT-IR, SEC-IR, and MALDI-Tof MS characterization. Polymer properties were measured by UV-Vis, TGA, and DSC.}, language = {en} } @phdthesis{Weiss2011, author = {Weiß, Jan}, title = {Synthesis and self-assembly of multiple thermoresponsive amphiphilic block copolymers}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-53360}, school = {Universit{\"a}t Potsdam}, year = {2011}, abstract = {In the present thesis, the self-assembly of multi thermoresponsive block copolymers in dilute aqueous solution was investigated by a combination of turbidimetry, dynamic light scattering, TEM measurements, NMR as well as fluorescence spectroscopy. The successive conversion of such block copolymers from a hydrophilic into a hydrophobic state includes intermediate amphiphilic states with a variable hydrophilic-to-lipophilic balance. As a result, the self-organization is not following an all-or-none principle but a multistep aggregation in dilute solution was observed. The synthesis of double thermoresponsive diblock copolymers as well as triple thermoresponsive triblock copolymers was realized using twofold-TMS labeled RAFT agents which provide direct information about the average molar mass as well as residual end group functionality from a routine proton NMR spectrum. First a set of double thermosensitive diblock copolymers poly(N-n-propylacrylamide)-b-poly(N-ethylacrylamide) was synthesized which differed only in the relative size of the two blocks. Depending on the relative block lengths, different aggregation pathways were found. Furthermore, the complementary TMS-labeled end groups served as NMR-probes for the self-assembly of these diblock copolymers in dilute solution. Reversible, temperature sensitive peak splitting of the TMS-signals in NMR spectroscopy was indicative for the formation of mixed star-/flower-like micelles in some cases. Moreover, triple thermoresponsive triblock copolymers from poly(N-n-propylacrylamide) (A), poly(methoxydiethylene glycol acrylate) (B) and poly(N-ethylacrylamide) (C) were obtained from sequential RAFT polymerization in all possible block sequences (ABC, BAC, ACB). Their self-organization behavior in dilute aqueous solution was found to be rather complex and dependent on the positioning of the different blocks within the terpolymers. Especially the localization of the low-LCST block (A) had a large influence on the aggregation behavior. Above the first cloud point, aggregates were only observed when the A block was located at one terminus. Once placed in the middle, unimolecular micelles were observed which showed aggregation only above the second phase transition temperature of the B block. Carrier abilities of such triple thermosensitive triblock copolymers tested in fluorescence spectroscopy, using the solvatochromic dye Nile Red, suggested that the hydrophobic probe is less efficiently incorporated by the polymer with the BAC sequence as compared to ABC or ACB polymers above the first phase transition temperature. In addition, due to the problem of increasing loss of end group functionality during the subsequent polymerization steps, a novel concept for the one-step synthesis of multi thermoresponsive block copolymers was developed. This allowed to synthesize double thermoresponsive di- and triblock copolymers in a single polymerization step. The copolymerization of different N-substituted maleimides with a thermosensitive styrene derivative (4-vinylbenzyl methoxytetrakis(oxyethylene) ether) led to alternating copolymers with variable LCST. Consequently, an excess of this styrene-based monomer allowed the synthesis of double thermoresponsive tapered block copolymers in a single polymerization step.}, language = {en} } @phdthesis{Nizardo2018, author = {Nizardo, Noverra Mardhatillah}, title = {Thermoresponsive block copolymers with UCST-behavior aimed at biomedical environments}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-412217}, school = {Universit{\"a}t Potsdam}, pages = {xiii, 134}, year = {2018}, abstract = {Thermoresponsive block copolymers of presumably highly biocompatible character exhibiting upper critical solution temperature (UCST) type phase behavior were developed. In particular, these polymers were designed to exhibit UCST-type cloud points (Tcp) in physiological saline solution (9 g/L) within the physiologically interesting window of 30-50°C. Further, their use as carrier for controlled release purposes was explored. Polyzwitterion-based block copolymers were synthesized by atom transfer radical polymerization (ATRP) via a macroinitiator approach with varied molar masses and co-monomer contents. These block copolymers can self-assemble in the amphiphilic state to form micelles, when the thermoresponsive block experiences a coil-to-globule transition upon cooling. Poly(ethylene glycol) methyl ether (mPEG) was used as the permanently hydrophilic block to stabilize the colloids formed, and polyzwitterions as the thermoresponsive block to promote the temperature-triggered assembly-disassembly of the micellear aggregates at low temperature. Three zwitterionic monomers were used for this studies, namely 3-((2-(methacryloyloxy)ethyl)dimethylammonio)propane-1-sulfonate (SPE), 4-((2-(methacryloyl- oxy)ethyl)dimethylammonio)butane-1-sulfonate (SBE), and 3-((2-(methacryloyloxy)ethyl)- dimethylammonio)propane-1-sulfate) (ZPE). Their (co)polymers were characterized with respect to their molecular structure by proton nuclear magnetic resonance (1H-NMR) and gel permeation chromatography (GPC). Their phase behaviors in pure water as well as in physiological saline were studied by turbidimetry and dynamic light scattering (DLS). These (co)polymers are thermoresponsive with UCST-type phase behavior in aqueous solution. Their phase transition temperatures depend strongly on the molar masses and the incorporation of co-monomers: phase transition temperatures increased with increasing molar masses and content of poorly water-soluble co-monomer. In addition, the presence of salt influenced the phase transition dramatically. The phase transition temperature decreased with increasing salt content in the solution. While the PSPE homopolymers show a phase transition only in pure water, the PZPE homopolymers are able to exhibit a phase transition only in high salinity, as in physiological saline. Although both polyzwitterions have similar chemical structures that differ only in the anionic group (sulfonate group in SPE and sulfate group in ZPE), the water solubility is very different. Therefore, the phase transition temperatures of targeted block copolymers were modulated by using statistical copolymer of SPE and ZPE as thermoresponsive block, and varying the ratio of SPE to ZPE. Indeed, the statistical copolymers of P(SPE-co-ZPE) show phase transitions both in pure water as well as in physiological saline. Surprisingly, it was found that mPEG-b-PSBE block copolymer can display "schizophrenic" behavior in pure water, with the UCST-type cloud point occurring at lower temperature than the LCST-type one. The block copolymer, which satisfied best the boundary conditions, is block copolymer mPEG114-b-P(SPE43-co-ZPE39) with a cloud point of 45°C in physiological saline. Therefore, it was chosen for solubilization studies of several solvatochromic dyes as models of active agents, using the thermoresponsive block copolymer as "smart" carrier. The uptake and release of the dyes were explored by UV-Vis and fluorescence spectroscopy, following the shift of the wavelength of the absorbance or emission maxima at low and high temperature. These are representative for the loaded and released state, respectively. However, no UCST-transition triggered uptake and release of these dyes could be observed. Possibly, the poor affinity of the polybetaines to the dyes in aqueous environtments may be related to the widely reported antifouling properties of zwitterionic polymers.}, language = {en} } @phdthesis{Tan2011, author = {Tan, Irene}, title = {Towards greener stationary phases : thermoresponsive and carbonaceous chromatographic supports}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-53130}, school = {Universit{\"a}t Potsdam}, year = {2011}, abstract = {Polymers which are sensitive towards external physical, chemical and electrical stimuli are termed as 'intelligent materials' and are widely used in medical and engineering applications. Presently, polymers which can undergo a physical change when heat is applied at a certain temperature (cloud point) in water are well-studied for this property in areas of separation chemistry, gene and drug delivery and as surface modifiers. One example of such a polymer is the poly (N-isopropylacrylamide) PNIPAAM, where it is dissolved well in water below 32 oC, while by increasing the temperature further leads to its precipitation. In this work, an alternative polymer poly (2-(2-methoxy ethoxy)ethyl methacrylate-co- oligo(ethylene glycol) methacrylate) (P(MEO2MA-co-OEGMA)) is studied due to its biocompatibility and the ability to vary its cloud points in water. When a layer of temperature responsive polymer was attached to a single continuous porous piece of silica-based material known as a monolith, the thermoresponsive characteristic was transferred to the column surfaces. The hybrid material was demonstrated to act as a simple temperature 'switch' in the separation of a mixture of five steroids under water. Different analytes were observed to be separated under varying column temperatures. Furthermore, more complex biochemical compounds such as proteins were also tested for separation. The importance of this work is attributed to separation processes utilizing environmentally friendly conditions, since harsh chemical environments conventionally used to resolve biocompounds could cause their biological activities to be rendered inactive.}, language = {en} }