@phdthesis{Li2008, author = {Li, Yanhong}, title = {Phase separation in giant vesicles}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-29138}, school = {Universit{\"a}t Potsdam}, year = {2008}, abstract = {Giant vesicles may contain several spatial compartments formed by phase separation within their enclosed aqueous solution. This phenomenon might be related to molecular crowding, fractionation and protein sorting in cells. To elucidate this process we used two chemically dissimilar polymers, polyethylene glycol (PEG) and dextran, encapsulated in giant vesicles. The dynamics of the phase separation of this polymer solution enclosed in vesicles is studied by concentration quench, i.e. exposing the vesicles to hypertonic solutions. The excess membrane area, produced by dehydration, can either form tubular structures (also known as tethers) or be utilized to perform morphological changes of the vesicle, depending on the interfacial tension between the coexisting phases and those between the membrane and the two phases. Membrane tube formation is coupled to the phase separation process. Apparently, the energy released from the phase separation is utilized to overcome the energy barrier for tube formation. The tubes may be absorbed at the interface to form a 2-demensional structure. The membrane stored in the form of tubes can be retracted under small tension perturbation. Furthermore, a wetting transition, which has been reported only in a few experimental systems, was discovered in this system. By increasing the polymer concentration, the PEG-rich phase changed from complete wetting to partial wetting of the membrane. If sufficient excess membrane area is available in the vesicle where both phases wet the membrane, one of the phases will bud off from the vesicle body, which leads to the separation of the two phases. This wetting-induced budding is governed by the surface energy and modulated by the membrane tension. This was demonstrated by micropipette aspiration experiments on vesicles encapsulating two phases. The budding of one phase can significantly decrease the surface energy by decreasing the contact area between the coexisting phases. The elasticity of the membrane allows it to adjust its tension automatically to balance the pulling force exerted by the interfacial tension of the two liquid phases at the three-phase contact line. The budding of the phase enriched with one polymer may be relevant to the selective protein transportation among lumens by means of vesicle in cells.}, language = {en} } @book{Gutlederer2007, author = {Gutlederer, Erwin Johann}, title = {On the morphology of vesicles. - [{\"u}berarb. Diss.]}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-15065}, publisher = {Universit{\"a}t Potsdam}, year = {2007}, abstract = {This dissertation contains theoretical investigations on the morphology and statistical mechanics of vesicles. The shapes of homogeneous fluid vesicles and inhomogeneous vesicles with fluid and solid membrane domains are calculated. The influence of thermal fluctuations is investigated. The obtained results are valid on mesoscopic length scales and are based on a geometrical membrane model, where the vesicle membrane is described as either a static or a thermal fluctuating surface. The thesis consists of three parts. In the first part, homogeneous vesicles are considered. The focus in this part is on the thermally induced morphological transition between vesicles with prolate and oblate shape. With the help of Monte Carlo simulations, the free energy profile of these vesicles is determined. It can be shown that the shape transformation between prolate and oblate vesicles proceeds continuously and is not hampered by a free energy barrier. The second and third part deal with inhomogeneous vesicles which contain intramembrane domains. These investigations are motivated by experimental results on domain formation in single or multicomponent vesicles, where phase separation occurs and different membrane phases coexist. The resulting domains differ with regard to their membrane structure (solid, fluid). The membrane structure has a distinct effect on the form of the domain and the morphology of the vesicle. In the second part, vesicles with coexisting solid and fluid membrane domains are studied, while the third part addresses vesicles with coexisting fluid domains. The equilibrium morphology of vesicles with simple and complex domain forms, derived through minimisation of the membrane energy, is determined as a function of material parameters. The results are summarised in morphology diagrams. These diagrams show previously unknown morphological transitions between vesicles with different domain shapes. The impact of thermal fluctuations on the vesicle and the form of the domains is investigated by means of Monte Carlo simulations.}, language = {en} } @phdthesis{Schlaad2005, author = {Schlaad, Helmut}, title = {Polymer self-assembly : adding complexity to mesostructures of diblock copolymers by specific interactions}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-0001824}, school = {Universit{\"a}t Potsdam}, year = {2005}, abstract = {In dieser Arbeit wurde die Rolle selektiver, nicht-kovalenter Wechselwirkungen bei der Selbstorganisation von Diblockcopolymeren untersucht. Durch Einf{\"u}hrung elektrostatischer, dipolarer Wechselwirkungen oder Wasserstoffbr{\"u}ckenbindungen sollte es gelingen, komplexe Mesostrukturen zu erzeugen und die Ordnung vom Nanometerbereich auf gr{\"o}ßere L{\"a}ngenskalen auszuweiten. Diese Arbeit ist im Rahmen von Biomimetik zu sehen, da sie Konzepte der synthetischen Polymer- und Kolloidchemie und Grundprinzipien der Strukturbildung in supramolekularen und biologischen Systemen verbindet. Folgende Copolymersysteme wurden untersucht: (i) Blockionomere, (ii) Blockcopolymere mit chelatisierenden Acetoacetoxyeinheiten und (iii) Polypeptid-Blockcopolymere.}, language = {en} } @phdthesis{Sinn2004, author = {Sinn, Cornelia G.}, title = {Ion binding to polymers and lipid membranes in aqueous solutions : Ionenbindung an Polymeren und Lipidmembranen in w{\"a}ssrigen L{\"o}sungen}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-0001778}, school = {Universit{\"a}t Potsdam}, year = {2004}, abstract = {Ziel dieser Arbeit ist die Untersuchung der Ionenbindung an Polymeren und Lipidmembranen in w{\"a}ssrigen L{\"o}sungen. Im ersten Teil dieser Arbeit wurde der Einfluss verschiedener anorganischer Salze und Polyelektrolyte auf die Struktur des Wassers mit Hilfe Isothermer Mikrotitrationskalorimetrie (ITC) erforscht. Die Verd{\"u}nnungsw{\"a}rme der Salze wurde als Maß f{\"u}r die F{\"a}higkeit der Ionen, die geordnete Struktur des Wassers zu stabilisieren oder zu zerst{\"o}ren, verwendet. Die Verd{\"u}nnungsw{\"a}rmen konnten auf Hofmeister Effekte zur{\"u}ckgef{\"u}hrt werden. Im Anschluss daran wurde die Bindung von Ca2+ an Natrium- Poly(acryls{\"a}ure) (NaPAA) untersucht. Mit Hilfe von ITC und einer Ca2+- selektiven Elektrode wurde die Reaktionsenthalpie und Bindungsisotherme gemessen. Es wurde gezeigt, dass die Binding von Ca2+ - Ionen an NaPAA stark endotherm und daher entropiegetrieben ist. Anschließend wurde die Bindung von Ca2+ an die eindimensionale Polymerkette mit der an ein Lipidvesikel mit denselben funktioniellen Gruppen verglichen. Es wurde beobachtet, dass die Ionenbindung \–wie auch im Fall des Polymers- endotherm ist. Ein Vergleich der Ca2+- Bindung an die Lipidmembran mit der an das Polymer konnte zeigen, dass das Ion schw{\"a}cher an die Membran bindet. Im Zusammenhang mit diesen Experimenten wurde auch beobachtet, dass Ca2+ nicht nur an geladene, sondern auch an zwitterionische Lipidvesikel bindet. Schließlich wurde die Wechselwirkung zweier Salze, KCl and NaCl, mit einem neutralen Polymergel, PNIPAAM, und dem geladenen Polymer PAA untersucht. Mit Hilfe von Kalorimetrie und einer kaliumselektiven Elektrode wurde beobachtet, dass die Ionen mit beiden Polymeren wechselwirken, unabh{\"a}ngig davon, ob diese Ladungen tragen, oder nicht.}, language = {en} }