@phdthesis{Wend2009, author = {Wend, Korinna}, title = {Konstruktion und toxikologische Nutzung von transgenen M{\"a}usen mit den allelischen Varianten von humanen SULT1A-Genen}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-42052}, school = {Universit{\"a}t Potsdam}, year = {2009}, abstract = {Eine besondere Rolle im Fremdstoffmetabolismus hat die SULT1A1 beim Menschen aufgrund der hohen Expression und breiten Gewebeverteilung. W{\"a}hrend die humane SULT1A1 in sehr vielen Geweben exprimiert wird, wurde die murine SULT1A1 vor allem in der Leber, Lunge und Colon gefunden. Neben der Gewebeverteilung spielt auch der Polymorphismus im humanen SULT1A1-Gen eine bedeutende Rolle. Der h{\"a}ufigste Polymorphismus in diesem Gen f{\"u}hrt zu einer Aminos{\"a}uresubstitution von Arginin zu Histidin an Position 213. Die Genvariante mit Histidin (auch als SULT1A1*2 bezeichnet) codiert f{\"u}r ein Protein mit einer geringen Enzymaktivit{\"a}t und einer reduzierten Enzymmenge in Thrombocyten. {\"U}ber den Einfluss dieser allelischen Varianten in anderen Geweben ist bislang wenig bekannt. In vorausgegangenen epidemiologischen Studien wurden m{\"o}gliche Korrelationen zwischen den Genvarianten und der Krebsentstehung in verschiedenen Geweben untersucht. Diese Daten liefern jedoch widerspr{\"u}chliche Ergebnisse zum Krebsrisiko. Aufgrund der strittigen epidemiologischen Daten sollten Tiermodelle generiert werden, um die h{\"a}ufigsten SULT1A1-Allele hinsichtlich der Empfindlichkeit gegen{\"u}ber Nahrungs- und Umweltkanzerogenen zu untersuchen. Zur Erzeugung transgener (tg) Mauslinien wurde mittels Mikroinjektion der codierenden Genbereich und große flankierende Humansequenzen stromaufw{\"a}rts und stromabw{\"a}rts in das Mausgenom integriert. Es wurden mehrere Mauslinien hergestellt. Zwei davon, die Mauslinie 31 mit dem SULT1A1*1-Allel und die Mauslinie 28 mit dem SULT1A1*2-Allel, wurden eingehend analysiert. In beiden Linien wurde eine identische Kopienzahl des Transgens ermittelt. Proteinbiochemische Charakterisierungen zeigten eine weitgehend dem Menschen entsprechende Gewebeverteilung und zellul{\"a}re und subzellul{\"a}re Lokalisation der humanen SULT1A1 in der Linie (Li) 28. In Li 31 wurden Unterschiede zu Li 28 sowohl in der Gewebeverteilung als auch in der zellul{\"a}ren Lokalisation des exprimierten humanen Proteins ermittelt. Dabei war die Expression auf Proteinebene in der SULT1A1*2-tg Linie generell st{\"a}rker als in der SULT1A1*1-Linie. Dieses Ergebnis war {\"u}berraschend, denn in humanen Thrombocyten f{\"u}hrt das SULT1A1*1-Allel zu einem h{\"o}heren Gehalt an SULT1A1-Protein als das SULT1A1*2-Allel. Zur Analyse der unterschiedlichen Proteinexpressionen in den tg Mauslinien wurde die cDNA und der 5´-flankierende Bereich des SULT1A1-Gens sequenziert. In beiden tg Linien entsprach die Sequenz der cDNA der Referenzsequenz aus der Gendatenbank (Pubmed). In der 5´-flankierenden Region wurden bekannte Polymorphismen analysiert und unterschiedliche Haplotypen in den tg Linien an den Positionen -624 und -396 ermittelt. Dabei wurde in der Li 31 der Haplotyp detektiert, der in der Literatur mit einer h{\"o}heren SULT1A1-Enzymaktivit{\"a}t beschrieben wird. Der m{\"o}gliche Zusammenhang zwischen Transkriptionsrate und Proteinexpression wurde in RNA-Expressionsanalysen im codierenden und 5´-nicht codierenden Bereich (mit den alternativen Exons 1B und 1A) untersucht. Im codierenden Bereich und im Exon 1B konnte in den untersuchten Organen eine h{\"o}here RNA-Expression in der Li 28 im Vergleich zur Li 31 ermittelt werden. Außer in der Lunge wurde f{\"u}r Exon 1B eine identische RNA-Expression detektiert. RNA, die Exon 1A enthielt, wurde in allen untersuchten Organen der Li 28, aber nur in der Lunge bei der Li 31 gefunden. In beiden tg Linien konnten mit den Exon 1A-Primern jedoch auch gr{\"o}ßere PCR-Produkte ermittelt werden. Dieser Unterschied im Exon 1A und m{\"o}gliche Spleißvarianten k{\"o}nnten damit f{\"u}r die unterschiedliche Proteinexpression des humanen SULT1A1-Proteins in den beiden tg Mauslinien sein. Die in dieser Arbeit generierten und charakterisierten tg Mausmodelle wurden in einer toxikologischen Studie eingesetzt. Es wurde das heterozyklische aromatische Amin 2-Amino-1-methyl-6-phenylimidazo-[4,5-b]pyridin (PhIP) verwendet. PhIP wird beim Erhitzen und Braten von Fleisch und Fisch gebildet und k{\"o}nnte mit der erh{\"o}hten Krebsentstehung im Colon in der westlichen Welt im Zusammenhang stehen. Mittels 32P-Postlabelling sollte der Einfluss der zus{\"a}tzlichen Expression der humanen SULT-Proteine auf die PhIP-DNA-Adduktbildung analysiert werden. Dabei wurden mehr DNA-Addukte in den tg Tieren als in den Wildtyp-M{\"a}usen ermittelt. Die Konzentration der gebildeten DNA-Addukte korrelierte mit der Expressionsst{\"a}rke des humanen SULT1A1-Proteins in den tg M{\"a}usen. An den in dieser Arbeit generierten tg Mauslinien mit den h{\"a}ufigsten allelischen Varianten des SULT1A1-Gens konnten Unterschiede auf RNA- und Protein-Ebene ermittelt werden. Zudem konnte gezeigt werden, dass die Expression der humanen SULT1A1 eine Auswirkung sowohl auf die St{\"a}rke als auch das Zielgewebe der DNA-Adduktbildung in vivo hat.}, language = {de} } @phdthesis{Dobbernack2008, author = {Dobbernack, Gisela}, title = {Konstruktion und Charakterisierung transgener Mauslinien f{\"u}r humane Sulfotransferasen als Modellsysteme f{\"u}r eine SULT-vermittelte metabolische Aktivierung}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-30447}, school = {Universit{\"a}t Potsdam}, year = {2008}, abstract = {Die Enzyme der Sulfotransferase-Gensuperfamilie (SULT) konjugieren nukleophile Gruppen von kleinen endogenen Verbindungen und Fremdstoffen mit der negativ geladenen Sulfo-Gruppe. Dadurch wird die Polarit{\"a}t dieser Verbindungen erh{\"o}ht, ihre passive Permeation von Zellmembranen verhindert und somit ihre Ausscheidung erleichtert. Jedoch stellt die Sulfo-Gruppe in bestimmten chemischen Verbindungen eine gute Abgangsgruppen dar. Aus der Spaltung resultierende Carbenium- oder Nitreniumionen k{\"o}nnen mit DNA oder anderen zellul{\"a}ren Nukleophilen reagieren. In Testsystemen f{\"u}r Mutagenit{\"a}t wurden zahlreiche Verbindungen, darunter Nahrungsinhaltsstoffe und Umweltkontaminanten, durch SULT zu Mutagenen aktiviert. Dabei zeigten sich zum einen eine ausgepr{\"a}gte Substratspezifit{\"a}t selbst orthologer SULT-Formen unterschiedlicher Spezies und zum anderen Interspezies-Unterschiede in der SULT-Gewebeverteilung. Daher k{\"o}nnten sich die Zielgewebe einer SULT-induzierten Krebsentstehung bei Mensch und Nager unterscheiden. Um die Beteiligung von humanen SULT an der Bioaktivierung von Fremdstoffen im Tiermodell untersuchen zu k{\"o}nnen, wurden transgene Mauslinien f{\"u}r den Cluster der humanen SULT1A1- und -1A2-Gene sowie f{\"u}r die humane SULT1B1 generiert. Zur Herstellung der transgenen Linien wurden große genomische Konstrukte verwendet, die die SULT-Gene sowie - zum Erreichen einer der Humansituation entsprechenden Gewebeverteilung der Proteinexpression - deren potentielle regulatorische Sequenzen enthielten. Es wurden je drei transgene Linien f{\"u}r hSULT1A1/hSULT1A2 und drei transgene Linien f{\"u}r hSULT1B1 etabliert. Die Expression der humanen Proteine konnte in allen Linien gezeigt werden und f{\"u}nf der sechs Linien konnten zur Homozygotie bez{\"u}glich der Transgene gez{\"u}chtet werden. In der molekularbiologischen Charakterisierung der transgenen Linien wurde der chromosomale Integrationsort der Konstrukte bestimmt und die Kopienzahl pro Genom untersucht. Mit Ausnahme einer hSULT1A1/hSULT1A2-transgenen Linie, bei der Kopien des Konstrukts in zwei unterschiedliche Chromosomen integriert vorliegen, wiesen alle Linien nur einen Transgen-Integrationsort auf. Die Untersuchung der Transgen-Kopienzahl ergab, dass die Mauslinien zwischen einer und etwa 20 Kopien des Transgen-Konstrukts pro Genom trugen. In der proteinbiochemischen Charakterisierung wurde gezeigt, dass die transgenen Linien die humanen Proteine mit einer weitgehend der des Menschen entsprechenden Gewebeverteilung exprimieren. Die Intensit{\"a}t der im Immunblot nachgewiesenen Expression korrelierte mit der Kopienzahl der Transgene. Die zellul{\"a}re und subzellul{\"a}re Verteilung der Transgen-Expression wurden bei einer der hSULT1A1/hSULT1A2-transgenen Linien in Leber, Niere, Lunge, Pankreas, D{\"u}nndarm und Kolon und bei einer der hSULT1B1-transgenen Linien im Kolon untersucht. Sie stimmte ebenfalls mit der Verteilung der entsprechenden SULT-Formen im Menschen {\"u}berein. Da sich die erzeugten transgenen Linien aufgrund ihrer mit dem Menschen vergleichbaren Gewebeverteilung der SULT-Expression als Modellsystem zur Untersuchung der menschlichen SULT-vermittelten metabolischen Aktivierung eigneten, wurde eine der hSULT1A1/hSULT1A2-transgenen Linien f{\"u}r zwei erste toxikologische Untersuchungen eingesetzt. Den M{\"a}usen wurden chemische Verbindungen verabreicht, f{\"u}r die in in-vitro-Versuchen eine hSULT1A1/hSULT1A2-vermittelte Bioaktivierung zu Mutagenen gezeigt worden war. In beiden Untersuchungen wurde die Gewebeverteilung der entstandenen DNA-Addukte als Endpunkt einer gewebespezifischen genotoxischen Wirkung ermittelt. In der ersten Untersuchung wurden 90 mg/kg K{\"o}rpergewicht 2-Amino-1-methyl-6-phenylimidazo[4,5-b]pyridin - ein in gebratenem Fleisch gebildetes heterozyklisches aromatisches Amin - transgenen sowie Wildtyp-M{\"a}usen oral verabreicht. Acht Stunden nach Applikation wiesen die transgenen M{\"a}use signifikant h{\"o}here Adduktniveaus als die Wildtyp-M{\"a}use in Leber, Lunge, Niere, Milz und Kolon auf. In der Leber der transgen M{\"a}use war das Adduktniveau 17fach h{\"o}her als in der Leber der Wildtyp-M{\"a}use. Die Leber war bei den transgenen Tieren das Organ mit dem h{\"o}chsten, bei den Wildtyp-Tieren hingegen mit dem niedrigsten DNA-Adduktniveau. In der zweiten Untersuchung (Pilotstudie mit geringer Tierzahl) wurde transgenen und Wildtyp-M{\"a}usen 19 mg/kg K{\"o}rpergewicht des polyzyklischen aromatischen Kohlenwasserstoffs 1-Hydroxymethylpyren - ein Metabolit der Nahrungs- und Umweltkontaminante 1-Methylpyren - intraperitoneal verabreicht. Nach 30 Minuten wurden, verglichen mit den Wildtyp-M{\"a}usen, bis zu 25fach erh{\"o}hte Adduktniveaus bei den transgenen M{\"a}usen in Leber, Niere, Lunge und Jejunum nachgewiesen. Somit konnte anhand einer in dieser Arbeit generierten transgenen Mauslinie erstmals gezeigt werden, dass die Expression der humanen SULT1A1/hSULT1A2 tats{\"a}chlich sowohl auf die St{\"a}rke als auch die Zielgewebe der DNA-Adduktbildung in vivo eine Auswirkung hat.}, language = {de} }