@phdthesis{Zenichowski2012, author = {Zenichowski, Karl}, title = {Quantum dynamical study of Si(100) surface-mounted, STM-driven switches at the atomic and molecular scale}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-62156}, school = {Universit{\"a}t Potsdam}, year = {2012}, abstract = {The aim of this thesis is the quantum dynamical study of two examples of scanning tunneling microscope (STM)-controllable, Si(100)(2x1) surface-mounted switches of atomic and molecular scale. The first example considers the switching of single H-atoms between two dangling-bond chemisorption sites on a Si-dimer of the Si(100) surface (Grey et al., 1996). The second system examines the conformational switching of single 1,5-cyclooctadiene molecules chemisorbed on the Si(100) surface (Nacci et al., 2008). The temporal dynamics are provided by the propagation of the density matrix in time via an according set of equations of motion (EQM). The latter are based on the open-system density matrix theory in Lindblad form. First order perturbation theory is used to evaluate those transition rates between vibrational levels of the system part. In order to account for interactions with the surface phonons, two different dissipative models are used, namely the bilinear, harmonic and the Ohmic bath model. IET-induced vibrational transitions in the system are due to the dipole- and the resonance-mechanism. A single surface approach is used to study the influence of dipole scattering and resonance scattering in the below-threshold regime. Further, a second electronic surface was included to study the resonance-induced switching in the above-threshold regime. Static properties of the adsorbate, e.g., potentials and dipole function and potentials, are obtained from quantum chemistry and used within the established quantum dynamical models.}, language = {en} } @phdthesis{Dokić2009, author = {Dokić, Jadranka}, title = {Quantum mechanical study of molecular switches : electronic structure, kinetics and dynamical aspects}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-41796}, school = {Universit{\"a}t Potsdam}, year = {2009}, abstract = {Molecular photoswitches are attracting much attention lately mostly because of their possible applications in nano technology, and their role in biology. One of the widely studied representatives of photochromic molecules is azobenzene (AB). With light, by a static electric field, or with tunneling electrons this specie can be "switched" from the flat and energetically more stable trans form, into the compact cis form. The back reaction can be induced optically or thermally. Quantum chemical calculations, mostly based on density functional theory, on the AB molecule, AB derivatives and related systems are presented. All the calculations were done for isolated species, however, with implications for latest experimental results aiming at the switching of surface mounted ABs. In some of these experiments, it is assumed that the switching process is substrate mediated, by attaching an electron or a hole to the adsorbate forming short-lived anion or cation resonances. Therefore, we calculated also cationic and anionic ABs in this work. An influence of external electric fields on the potential energy surfaces, was also studied. Further, by the type, number and positioning of various substituent groups, systematic changes on activation energies and rates for the thermal cis-to-trans isomerization can be enforced. The nature of the transition state for ground state isomerization was investigated. Applying Eyring's transition state theory, trends in activation energies and rates were predicted and are, where a comparison was possible, in good agreement with experimental data. Further, thermal isomerization was studied in solution, for which a polarizable continuum model was employed. The influence of substitution and an environment leaves its traces on structural properties of molecules and quantitative appearance of calculated UV/Vis spectra, as well. Finally, an explicit treatment of a solid substrate was demonstrated for the conformational switching, by scanning tunneling microscope, of a 1,5-cyclooctadiene (COD) molecule at a Si(001) surface, treated by a cluster model. At first, we studied energetics and potential energy surfaces along relevant switching coordinates by quantum chemical calculations, followed by the switching dynamics using wave packet methods. We show that, in spite the simplicity of the model, our calculations support the switching of adsorbed COD, by inelastic electron tunneling at low temperatures.}, language = {en} }