@phdthesis{Goldobin2007, author = {Goldobin, Denis S.}, title = {Coherence and synchronization of noisy-driven oscillators}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-15047}, school = {Universit{\"a}t Potsdam}, year = {2007}, abstract = {In the present dissertation paper we study problems related to synchronization phenomena in the presence of noise which unavoidably appears in real systems. One part of the work is aimed at investigation of utilizing delayed feedback to control properties of diverse chaotic dynamic and stochastic systems, with emphasis on the ones determining predisposition to synchronization. Other part deals with a constructive role of noise, i.e. its ability to synchronize identical self-sustained oscillators. First, we demonstrate that the coherence of a noisy or chaotic self-sustained oscillator can be efficiently controlled by the delayed feedback. We develop the analytical theory of this effect, considering noisy systems in the Gaussian approximation. Possible applications of the effect for the synchronization control are also discussed. Second, we consider synchrony of limit cycle systems (in other words, self-sustained oscillators) driven by identical noise. For weak noise and smooth systems we proof the purely synchronizing effect of noise. For slightly different oscillators and/or slightly nonidentical driving, synchrony becomes imperfect, and this subject is also studied. Then, with numerics we show moderate noise to be able to lead to desynchronization of some systems under certain circumstances. For neurons the last effect means "antireliability" (the "reliability" property of neurons is treated to be important from the viewpoint of information transmission functions), and we extend our investigation to neural oscillators which are not always limit cycle ones. Third, we develop a weakly nonlinear theory of the Kuramoto transition (a transition to collective synchrony) in an ensemble of globally coupled oscillators in presence of additional time-delayed coupling terms. We show that a linear delayed feedback not only controls the transition point, but effectively changes the nonlinear terms near the transition. A purely nonlinear delayed coupling does not affect the transition point, but can reduce or enhance the amplitude of collective oscillations.}, language = {en} }