@article{FiorentinoManganelliGiustietal.2013, author = {Fiorentino, V. and Manganelli, Giuseppe and Giusti, Folco and Tiedemann, Ralph and Ketmaier, Valerino}, title = {A question of time the land snail Murella muralis (Gastropoda: Pulmonata) reveals constraints on past ecological speciation}, series = {Molecular ecology}, volume = {22}, journal = {Molecular ecology}, number = {1}, publisher = {Wiley-Blackwell}, address = {Hoboken}, issn = {0962-1083}, doi = {10.1111/mec.12107}, pages = {170 -- 186}, year = {2013}, abstract = {The lively debate about speciation currently focuses on the relative importance of factors driving population differentiation. While many studies are increasingly producing results on the importance of selection, little is known about the interaction between drift and selection. Moreover, there is still little knowledge on the spatial-temporal scales at which speciation occurs, that is, arrangement of habitat patches, abruptness of habitat transitions, climate and habitat changes interacting with selective forces. To investigate these questions, we quantified variation on a fine geographical scale analysing morphological (shell) and genetic data sets coupled with environmental data in the land snail Murella muralis, endemic to the Mediterranean island of Sicily. Analysis of a fragment of the mitochondrial DNA cytochrome oxidase I gene (COI) and eight nuclear microsatellite loci showed that genetic variation is highly structured at a very fine spatial scale by local palaeogeographical events and historical population dynamics. Molecular clock estimates, calibrated here specifically for Tyrrhenian land snails, provided a framework of palaeogeographical events responsible for the observed geographical variations and migration routes. Finally, we showed for the first time well-documented lines of evidence of selection in the past, which explains divergence of land snail shell shapes. We suggest that time and palaeogeographical history acted as constraints in the progress along the ecological speciation continuum. Our study shows that testing for correlation among palaeogeography, morphology and genetic data on a fine geographical scale provides information fundamental for a detailed understanding of ecological speciation processes.}, language = {en} } @article{FeulnerPlathEngelmannetal.2009, author = {Feulner, Philine G. D. and Plath, Martin and Engelmann, Jacob and Kirschbaum, Frank and Tiedemann, Ralph}, title = {Electrifying love : electric fish use species-specific discharge for mate recognition}, issn = {1744-9561}, doi = {10.1098/rsbl.2008.0566}, year = {2009}, abstract = {Mate choice is mediated by a range of sensory cues, and assortative mating based on these cues can drive reproductive isolation among diverging populations. A specific feature of mormyrid fish, the electric organ discharge (EOD), is used for electrolocation and intraspecific communication. We hypothesized that the EOD also facilitates assortative mating and ultimately promotes prezygotic reproductive isolation in African weakly electric fishes. Our behavioural experiments using live males as well as EOD playback demonstrated that female mate recognition is influenced by EOD signals and that females are attracted to EOD characteristics of conspecific males. The dual function of the EOD for both foraging and social communication (including mate recognition leading to assortative mating) underlines the importance of electric signal differentiation for the divergence of African weakly electric fishes. Thus, the EOD provides an intriguing mechanism promoting trophic divergence and reproductive isolation between two closely related Campylomormyrus species occurring in sympatry in the lower Congo rapids.}, language = {en} } @article{FeulnerKirschbaumTiedemann2005, author = {Feulner, Philine g. d. and Kirschbaum, Frank and Tiedemann, Ralph}, title = {Eighteen microsatellite loci for endemic African weakly electric fish (Campylomormyrus, Mormyridae) and their cross species applicability among related taxa}, year = {2005}, abstract = {We describe isolation and characterization of the first microsatellite loci specifically developed for African weakly electric fish (Mormyridae), for the genus Campylomormyrus. Seventeen of our 18 loci are polymorphic within the Campylomormyrus numenius species complex. The polymorphic loci showed four to 15 alleles per locus, an expected heterozygosity between 0.46 and 0.94, and an observed heterozygosity between 0.31 and 1.00. Most primers also yield reproducible results in several other mormyrid species. These loci comprise a set of molecular markers for various applications, from moderately polymorphic loci suitable for population studies to highly polymorphic loci for pedigree analysis in mormyrids}, language = {en} } @article{FeulnerKirschbaumSchugardtetal.2006, author = {Feulner, Philine G. D. and Kirschbaum, Frank and Schugardt, Christian and Ketmaier, Valerio and Tiedemann, Ralph}, title = {Electrophysiological and molecular genetic evidence for sympatrically occuring cryptic species in African weakly electric fishes (Teleostei : Mormyridae : Campylomormyrus)}, issn = {1055-7903}, doi = {10.1016/j.ympev.2005.09.008}, year = {2006}, abstract = {For two sympatric species of African weakly electric fish, Campylomormyrus tamandua and Campylomormyrus numenius, we monitored ontogenetic differentiation in electric organ discharge (EOD) and established a molecular phylogeny, based on 2222 bp from cytochrome b, the S7 ribosomal protein gene, and four flanking regions of unlinked microsatellite loci. In C tamandua, there is one common EOD type, regardless of age and sex, whereas in C numenius we were able to identify three different male adult EOD waveform types, which emerged from a single common EOD observed in juveniles. Two of these EOD types formed well supported clades in our phylogenetic analysis. In an independent line of evidence, we were able to affirm the classification into three groups by microsatellite data. The correct assignment and the high pairwise FST values support our hypothesis that these groups are reproductively isolated. We propose that in C numenius there are cryptic species, hidden behind similar and, at least as juveniles, identical morphs.}, language = {en} } @article{EppStoofTrauthetal.2010, author = {Epp, Laura Saskia and Stoof, Kathleen R. and Trauth, Martin H. and Tiedemann, Ralph}, title = {Historical genetics on a sediment core from a Kenyan lake : intraspecific genotype turnover in a tropical rotifer is related to past environmental changes}, issn = {0921-2728}, doi = {10.1007/s10933-009-9379-7}, year = {2010}, abstract = {Using molecular genetic methods and an ancient DNA approach, we studied population and species succession of rotifers of the genus Brachionus in the Kenyan alkaline-saline crater lake Sonachi since the beginning of the 19th century as well as distribution of Brachionus haplotypes in recent and historic sediments of other lakes of the East African Rift System. The sediment core record of Lake Sonachi displays haplotypes of a distinct evolutionary lineage in all increments. Populations were dominated by a single mitochondrial haplotype for a period of 150 years, and two putatively intraspecific turnovers in dominance occurred. Both changes are concordant with major environmental perturbations documented by a profound visible change in sediment composition of the core. The first change was very abrupt and occurred after the deposition of volcanic ash at the beginning of the 19th century. The second change coincides with a major lake level lowstand during the 1940s. It was preceded by a period of successively declining lake level, in which two other haplotypes appeared in the lake. One of these putatively belongs to another species documented in historical and recent Kenyan lake sediments. The analysis of plankton population dynamics through historical time can reveal patterns of population persistence and turnover in relation to environmental changes.}, language = {en} } @article{EppKruseKathetal.2018, author = {Epp, Laura Saskia and Kruse, Stefan and Kath, Nadja J. and Stoof-Leichsenring, Kathleen Rosemarie and Tiedemann, Ralph and Pestryakova, Luidmila Agafyevna and Herzschuh, Ulrike}, title = {Temporal and spatial patterns of mitochondrial haplotype and species distributions in Siberian larches inferred from ancient environmental DNA and modeling}, series = {Scientific reports}, volume = {8}, journal = {Scientific reports}, publisher = {Nature Publ. Group}, address = {London}, issn = {2045-2322}, doi = {10.1038/s41598-018-35550-w}, pages = {9}, year = {2018}, abstract = {Changes in species' distributions are classically projected based on their climate envelopes. For Siberian forests, which have a tremendous significance for vegetation-climate feedbacks, this implies future shifts of each of the forest-forming larch (Larix) species to the north-east. However, in addition to abiotic factors, reliable projections must assess the role of historical biogeography and biotic interactions. Here, we use sedimentary ancient DNA and individual-based modelling to investigate the distribution of larch species and mitochondrial haplotypes through space and time across the treeline ecotone on the southern Taymyr peninsula, which at the same time presents a boundary area of two larch species. We find spatial and temporal patterns, which suggest that forest density is the most influential driver determining the precise distribution of species and mitochondrial haplotypes. This suggests a strong influence of competition on the species' range shifts. These findings imply possible climate change outcomes that are directly opposed to projections based purely on climate envelopes. Investigations of such fine-scale processes of biodiversity change through time are possible using paleoenvironmental DNA, which is available much more readily than visible fossils and can provide information at a level of resolution that is not reached in classical palaeoecology.}, language = {en} } @article{DominguezTiedemannReboredaetal.2017, author = {Dominguez, Marisol and Tiedemann, Ralph and Reboreda, Juan C. and Segura, Luciano and Tittarelli, Fabian and Mahler, Bettina}, title = {Genetic structure reveals management units for the yellow cardinal (Gubernatrix cristata), endangered by habitat loss and illegal trapping}, series = {Conservation genetics}, volume = {18}, journal = {Conservation genetics}, publisher = {Springer}, address = {Dordrecht}, issn = {1566-0621}, doi = {10.1007/s10592-017-0964-4}, pages = {1131 -- 1140}, year = {2017}, language = {en} } @article{DolgenerSchroederSchneeweissetal.2012, author = {Dolgener, Nicola and Schr{\"o}der, Christiane and Schneeweiss, N. and Tiedemann, Ralph}, title = {Genetic population structure of the Fire-bellied toad Bombina bombina in an area of high population density implications for conservation}, series = {Hydrobiologia : acta hydrobiologica, hydrographica, limnologica et protistologica}, volume = {689}, journal = {Hydrobiologia : acta hydrobiologica, hydrographica, limnologica et protistologica}, number = {1}, publisher = {Springer}, address = {Dordrecht}, issn = {0018-8158}, doi = {10.1007/s10750-012-1016-1}, pages = {111 -- 120}, year = {2012}, abstract = {In this study, we report the genetic population structure of the Fire-bellied toad Bombina bombina in Brandenburg (East Germany) in the context of conservation. We analysed 298 samples originating from 11 populations in Brandenburg using mitochondrial control region sequences and six polymorphic microsatellite loci. For comparison, we included one population each from Poland and Ukraine into our analysis. Within Brandenburg, we detected a moderate variability in the mitochondrial control region (19 different haplotypes) and at microsatellite loci (9-12 alleles per locus). These polymorphisms revealed a clear population structure among toads in Brandenburg, despite a relatively high overall population density and the moderate size of single populations (100-2000 individuals). The overall genetic population structure is consistent with a postglacial colonization from South East-Europe and a subsequent population expansion. Based on genetic connectivity, we infer Management Units (MUs) as targets for conservation. Our genetic survey identified MUs, within which human infrastructure is currently preventing any genetic exchange. We also detect an unintentional translocation from South East to North West Brandenburg, presumably in the course of fish stocking activities. Provided suitable conservation measures are taken, Brandenburg should continue to harbor large populations of this critically endangered species.}, language = {en} } @article{DolgenerFreudenbergerSchneeweissetal.2014, author = {Dolgener, Nicola and Freudenberger, L. and Schneeweiss, N. and Ibisch, P. L. and Tiedemann, Ralph}, title = {Projecting current and potential future distribution of the Fire-bellied toad Bombina bombina under climate change in north-eastern Germany}, series = {Regional environmental change}, volume = {14}, journal = {Regional environmental change}, number = {3}, publisher = {Springer}, address = {Heidelberg}, issn = {1436-3798}, doi = {10.1007/s10113-013-0468-9}, pages = {1063 -- 1072}, year = {2014}, abstract = {Environmental change is likely to have a strong impact on biodiversity, and many species may shift their distribution in response. In this study, we aimed at projecting the availability of suitable habitat for an endangered amphibian species, the Fire-bellied toad Bombina bombina, in Brandenburg (north-eastern Germany). We modelled a potential habitat distribution map based on (1) a database with 10,581 presence records for Bombina from the years 1990 to 2009, (2) current estimates for ecogeographical variables (EGVs) and (3) the future projection of these EGVs according to the statistical regional model, respectively, the soil and water integrated model, applying the maximum entropy approach (Maxent). By comparing current and potential future distributions, we evaluated the projected change in distribution of suitable habitats and identified the environmental variables most associated with habitat suitability that turned out to be climatic variables related to the hydrological cycle. Under the applied scenario, our results indicate increasing habitat suitability in many areas and an extended range of suitable habitats. However, even if the environmental conditions in Brandenburg may change as predicted, it is questionable whether the Fire-bellied toad will truly benefit, as dispersal abilities of amphibian species are limited and strongly influenced by anthropogenic disturbances, that is, intensive agriculture, habitat destruction and fragmentation. Furthermore, agronomic pressure is likely to increase on productive areas with fertile soils and high water retention capacities, indeed those areas suitable for B. bombina. All these changes may affect temporary pond hydrology as well as the reproductive success and breeding phenology of toads.}, language = {en} } @article{DolgenerFreudenbergerSchlucketal.2014, author = {Dolgener, N. and Freudenberger, L. and Schluck, M. and Schneeweiss, N. and Ibisch, P. L. and Tiedemann, Ralph}, title = {Environmental niche factor analysis (ENFA) relates environmental parameters to abundance and genetic diversity in an endangered amphibian, the fire-bellied-toad (Bombina bombina)}, series = {Conservation genetics}, volume = {15}, journal = {Conservation genetics}, number = {1}, publisher = {Springer}, address = {Dordrecht}, issn = {1566-0621}, doi = {10.1007/s10592-013-0517-4}, pages = {11 -- 21}, year = {2014}, abstract = {Increasing attempts are made to understand the factors responsible for both the demographic and genetic depletion in amphibian populations. Landscape genetics aims at a spatially explicit correlation of genetic population parameters to landscape features. Using data from the endangered fire-bellied toad Bombina bombina in Brandenburg (Northeastern Germany), we performed an environmental niche factor analysis (ENFA), relating demographic (abundance) and genetic (diversity at 17 microsatellite loci and partial sequences of the mitochondrial control region in 434 individuals from 16 populations) parameters to ecological and anthropogenic variables such as temperature, precipitation, soil wetness, water runoff, vegetation density, and road/traffic impact. We found significant correlations between road disturbance and observed heterozygosity and between soil wetness and mitochondrial diversity. As the influences of the environmental variables can differ between different indicators for genetic diversity, population size and abundance data, our ENFA-based landscape genetics approach allows us to put various aspects of long- versus short term effective population size and genetic connectivity into an ecological and spatially explicit context, enabling potentially even forecast assessment under future environmental scenarios.}, language = {en} } @article{DiGiacomoDiGiacomoKligeretal.2015, author = {Di Giacomo, Adrian S. and Di Giacomo, Alejandro G. and Kliger, Rafi and Reboreda, Juan C. and Tiedemann, Ralph and Mahler, Bettina}, title = {No evidence of genetic variation in microsatellite and mitochondrial DNA markers among remaining populations of the Strange-tailed Tyrant Alectrurus risora, an endangered grassland species}, series = {Bird conservation international}, volume = {25}, journal = {Bird conservation international}, number = {2}, publisher = {Cambridge Univ. Press}, address = {New York}, issn = {0959-2709}, doi = {10.1017/S0959270914000203}, pages = {127 -- 138}, year = {2015}, abstract = {The Strange-tailed Tyrant Alectrurus risora (Aves: Tyrannidae) is an endemic species of southern South American grasslands that suffered a 90\% reduction of its original distribution due to habitat transformation. This has led the species to be classified as globally Vulnerable. By the beginning of the last century, populations were partially migratory and moved south during the breeding season. Currently, the main breeding population inhabits the Ibera wetlands in the province of Corrientes, north-east Argentina, where it is resident all year round. There are two remaining small populations in the province of Formosa, north-east Argentina, and in southern Paraguay, which are separated from the main population by the Parana-Paraguay River and its continuous riverine forest habitat. The populations of Corrientes and Formosa are separated by 300 km and the grasslands between populations are non-continuous due to habitat transformation. We used mtDNA sequences and eight microsatellite loci to test if there were evidences of genetic isolation between Argentinean populations. We found no evidence of genetic structure between populations (Phi(ST) = 0.004, P = 0.32; Fst = 0.01, P = 0.06), which can be explained by either retained ancestral polymorphism or by dispersal between populations. We found no evidence for a recent demographic bottleneck in nuclear loci. Our results indicate that these populations could be managed as a single conservation unit on a regional scale. Conservation actions should be focused on preserving the remaining network of areas with natural grasslands to guarantee reproduction, dispersal and prevent further decline of populations.}, language = {en} } @article{DeCahsanWestburyDrewsetal.2019, author = {De Cahsan, Binia and Westbury, Michael V. and Drews, Hauke and Tiedemann, Ralph}, title = {The complete mitochondrial genome of a European fire-bellied toad (Bombina bombina) from Germany}, series = {Mitochondrial DNA Part B}, volume = {4}, journal = {Mitochondrial DNA Part B}, number = {1}, publisher = {Taylor \& Francis Group}, address = {London}, issn = {2380-2359}, doi = {10.1080/23802359.2018.1547143}, pages = {498 -- 500}, year = {2019}, abstract = {The European fire-bellied toad, Bombina bombina, is a small aquatic toad belonging to the family Bombinatoridae. The species is native to the lowlands of Central and Eastern Europe, where population numbers have been in decline in recent past decades. Here, we present the first complete mitochondrial genome of the endangered European fire-bellied toad from Northern Germany recovered using iterative mapping. Phylogenetic analyses including other representatives of the Bombinatoridae placed our German specimen as sister to a Polish B. bombina sequence with high support. This finding is congruent with the postulated Pleistocene history of the species. Our complete mitochondrial genome represents an important resource for further population analysis of the European fire-bellied toad, especially those found within Germany.}, language = {en} } @article{DeCahsanNagelSchedinaetal.2020, author = {De Cahsan, Binia and Nagel, Rebecca and Schedina, Ina-Maria and King, James J. and Bianco, Pier G. and Tiedemann, Ralph and Ketmaier, Valerio}, title = {Phylogeography of the European brook lamprey (Lampetra planeri) and the European river lamprey (Lampetra fluviatilis) species pair based on mitochondrial data}, series = {Journal of fish biology}, volume = {96}, journal = {Journal of fish biology}, number = {4}, publisher = {Wiley-Blackwell}, address = {Oxford [u.a.]}, issn = {0022-1112}, doi = {10.1111/jfb.14279}, pages = {905 -- 912}, year = {2020}, abstract = {The European river lamprey Lampetra fluviatilis and the European brook lamprey Lampetra planeri (Block 1784) are classified as a paired species, characterized by notably different life histories but morphological similarities. Previous work has further shown limited genetic differentiation between these two species at the mitochondrial DNA level. Here, we expand on this previous work, which focused on lamprey species from the Iberian Peninsula in the south and mainland Europe in the north, by sequencing three mitochondrial marker regions of Lampetra individuals from five river systems in Ireland and five in southern Italy. Our results corroborate the previously identified pattern of genetic diversity for the species pair. We also show significant genetic differentiation between Irish and mainland European lamprey populations, suggesting another ichthyogeographic district distinct from those previously defined. Finally, our results stress the importance of southern Italian L. planeri populations, which maintain several private alleles and notable genetic diversity.}, language = {en} } @article{ColangeliSchlaegelOberteggeretal.2019, author = {Colangeli, Pierluigi and Schl{\"a}gel, Ulrike E. and Obertegger, Ulrike and Petermann, Jana S. and Tiedemann, Ralph and Weithoff, Guntram}, title = {Negative phototactic response to UVR in three cosmopolitan rotifers: a video analysis approach}, series = {Hydrobiologia : acta hydrobiologica, hydrographica, limnologica et protistologica}, volume = {844}, journal = {Hydrobiologia : acta hydrobiologica, hydrographica, limnologica et protistologica}, number = {1}, publisher = {Springer}, address = {Dordrecht}, issn = {0018-8158}, doi = {10.1007/s10750-018-3801-y}, pages = {43 -- 54}, year = {2019}, language = {en} } @article{ChengDennisOsuohaetal.2023, author = {Cheng, Feng and Dennis, Alice B. and Osuoha, Josephine Ijeoma and Canitz, Julia and Kirschbaum, Frank and Tiedemann, Ralph}, title = {A new genome assembly of an African weakly electric fish (Campylomormyrus compressirostris, Mormyridae) indicates rapid gene family evolution in Osteoglossomorpha}, series = {BMC genomics}, volume = {24}, journal = {BMC genomics}, number = {1}, publisher = {BMC}, address = {London}, issn = {1471-2164}, doi = {10.1186/s12864-023-09196-6}, pages = {13}, year = {2023}, abstract = {Background Teleost fishes comprise more than half of the vertebrate species. Within teleosts, most phylogenies consider the split between Osteoglossomorpha and Euteleosteomorpha/Otomorpha as basal, preceded only by the derivation of the most primitive group of teleosts, the Elopomorpha. While Osteoglossomorpha are generally species poor, the taxon contains the African weakly electric fish (Mormyroidei), which have radiated into numerous species. Within the mormyrids, the genus Campylomormyrus is mostly endemic to the Congo Basin. Campylomormyrus serves as a model to understand mechanisms of adaptive radiation and ecological speciation, especially with regard to its highly diverse species-specific electric organ discharges (EOD). Currently, there are few well-annotated genomes available for electric fish in general and mormyrids in particular. Our study aims at producing a high-quality genome assembly and to use this to examine genome evolution in relation to other teleosts. This will facilitate further understanding of the evolution of the osteoglossomorpha fish in general and of electric fish in particular. Results A high-quality weakly electric fish (C. compressirostris) genome was produced from a single individual with a genome size of 862 Mb, consisting of 1,497 contigs with an N50 of 1,399 kb and a GC-content of 43.69\%. Gene predictions identified 34,492 protein-coding genes, which is a higher number than in the two other available Osteoglossomorpha genomes of Paramormyrops kingsleyae and Scleropages formosus. A Computational Analysis of gene Family Evolution (CAFE5) comparing 33 teleost fish genomes suggests an overall faster gene family turnover rate in Osteoglossomorpha than in Otomorpha and Euteleosteomorpha. Moreover, the ratios of expanded/contracted gene family numbers in Osteoglossomorpha are significantly higher than in the other two taxa, except for species that had undergone an additional genome duplication (Cyprinus carpio and Oncorhynchus mykiss). As potassium channel proteins are hypothesized to play a key role in EOD diversity among species, we put a special focus on them, and manually curated 16 Kv1 genes. We identified a tandem duplication in the KCNA7a gene in the genome of C. compressirostris. Conclusions We present the fourth genome of an electric fish and the third well-annotated genome for Osteoglossomorpha, enabling us to compare gene family evolution among major teleost lineages. Osteoglossomorpha appear to exhibit rapid gene family evolution, with more gene family expansions than contractions. The curated Kv1 gene family showed seven gene clusters, which is more than in other analyzed fish genomes outside Osteoglossomorpha. The KCNA7a, encoding for a potassium channel central for EOD production and modulation, is tandemly duplicated which may related to the diverse EOD observed among Campylomormyrus species.}, language = {en} } @article{CanitzKirschbaumTiedemann2020, author = {Canitz, Julia and Kirschbaum, Frank and Tiedemann, Ralph}, title = {Transcriptome-wide single nucleotide polymorphisms related to electric organ discharge differentiation among African weakly electric fish species}, series = {PLoS one}, volume = {15}, journal = {PLoS one}, number = {10}, publisher = {PLoS}, address = {San Francisco, California, US}, issn = {1932-6203}, doi = {10.1371/journal.pone.0240812}, pages = {21}, year = {2020}, abstract = {African weakly electric fish of the mormyrid genus Campylomormyrus generate pulse-type electric organ discharges (EODs) for orientation and communication. Their pulse durations are species-specific and elongated EODs are a derived trait. So far, differential gene expression among tissue-specific transcriptomes across species with different pulses and point mutations in single ion channel genes indicate a relation of pulse duration and electrocyte geometry/excitability. However, a comprehensive assessment of expressed Single Nucleotide Polymorphisms (SNPs) throughout the entire transcriptome of African weakly electric fish, with the potential to identify further genes influencing EOD duration, is still lacking. This is of particular value, as discharge duration is likely based on multiple cellular mechanisms and various genes. Here we provide the first transcriptome-wide SNP analysis of African weakly electric fish species (genus Campylomormyrus) differing by EOD duration to identify candidate genes and cellular mechanisms potentially involved in the determination of an elongated discharge of C. tshokwe. Non-synonymous substitutions specific to C. tshokwe were found in 27 candidate genes with inferred positive selection among Campylomormyrus species. These candidate genes had mainly functions linked to transcriptional regulation, cell proliferation and cell differentiation. Further, by comparing gene annotations between C. compressirostris (ancestral short EOD) and C. tshokwe (derived elongated EOD), we identified 27 GO terms and 2 KEGG pathway categories for which C. tshokwe significantly more frequently exhibited a species-specific expressed substitution than C. compressirostris. The results indicate that transcriptional regulation as well cell proliferation and differentiation take part in the determination of elongated pulse durations in C. tshokwe. Those cellular processes are pivotal for tissue morphogenesis and might determine the shape of electric organs supporting the observed correlation between electrocyte geometry/tissue structure and discharge duration. The inferred expressed SNPs and their functional implications are a valuable resource for future investigations on EOD durations.}, language = {en} } @article{CahsanWestburyParaskevopoulouetal.2021, author = {Cahsan, Binia De and Westbury, Michael V. and Paraskevopoulou, Sofia and Drews, Hauke and Ott, Moritz and Gollmann, G{\"u}nter and Tiedemann, Ralph}, title = {Genomic consequences of human-mediated translocations in margin populations of an endangered amphibian}, series = {Evolutionary Applications}, volume = {14}, journal = {Evolutionary Applications}, number = {6}, publisher = {John Wiley \& Sons, Inc.}, address = {New Jersey}, issn = {1752-4563}, doi = {10.1111/eva.13229}, pages = {12}, year = {2021}, abstract = {Due to their isolated and often fragmented nature, range margin populations are especially vulnerable to rapid environmental change. To maintain genetic diversity and adaptive potential, gene flow from disjunct populations might therefore be crucial to their survival. Translocations are often proposed as a mitigation strategy to increase genetic diversity in threatened populations. However, this also includes the risk of losing locally adapted alleles through genetic swamping. Human-mediated translocations of southern lineage specimens into northern German populations of the endangered European fire-bellied toad (Bombina bombina) provide an unexpected experimental set-up to test the genetic consequences of an intraspecific introgression from central population individuals into populations at the species range margin. Here, we utilize complete mitochondrial genomes and transcriptome nuclear data to reveal the full genetic extent of this translocation and the consequences it may have for these populations. We uncover signs of introgression in four out of the five northern populations investigated, including a number of introgressed alleles ubiquitous in all recipient populations, suggesting a possible adaptive advantage. Introgressed alleles dominate at the MTCH2 locus, associated with obesity/fat tissue in humans, and the DSP locus, essential for the proper development of epidermal skin in amphibians. Furthermore, we found loci where local alleles were retained in the introgressed populations, suggesting their relevance for local adaptation. Finally, comparisons of genetic diversity between introgressed and nonintrogressed northern German populations revealed an increase in genetic diversity in all German individuals belonging to introgressed populations, supporting the idea of a beneficial transfer of genetic variation from Austria into North Germany.}, language = {en} } @article{CahsanKiemelWestburyetal.2021, author = {Cahsan, Binia De and Kiemel, Katrin and Westbury, Michael V. and Lauritsen, Maike and Autenrieth, Marijke and Gollmann, G{\"u}nter and Schweiger, Silke and Stenberg, Marika and Nystr{\"o}m, Per and Drews, Hauke and Tiedemann, Ralph}, title = {Southern introgression increases adaptive immune gene variability in northern range margin populations of Fire-bellied toad}, series = {Ecology and Evolution}, volume = {11}, journal = {Ecology and Evolution}, number = {14}, publisher = {John Wiley \& Sons, Inc.}, address = {New Jersey}, issn = {2045-7758}, doi = {10.1002/ece3.7805}, pages = {15}, year = {2021}, abstract = {Northern range margin populations of the European fire-bellied toad (Bombina bombina) have rapidly declined during recent decades. Extensive agricultural land use has fragmented the landscape, leading to habitat disruption and loss, as well as eutrophication of ponds. In Northern Germany (Schleswig-Holstein) and Southern Sweden (Sk{\aa}ne), this population decline resulted in decreased gene flow from surrounding populations, low genetic diversity, and a putative reduction in adaptive potential, leaving populations vulnerable to future environmental and climatic changes. Previous studies using mitochondrial control region and nuclear transcriptome-wide SNP data detected introgressive hybridization in multiple northern B. bombina populations after unreported release of toads from Austria. Here, we determine the impact of this introgression by comparing the body conditions (proxy for fitness) of introgressed and nonintrogressed populations and the genetic consequences in two candidate genes for putative local adaptation (the MHC II gene as part of the adaptive immune system and the stress response gene HSP70 kDa). We detected regional differences in body condition and observed significantly elevated levels of within individual MHC allele counts in introgressed Swedish populations, associated with a tendency toward higher body weight, relative to regional nonintrogressed populations. These differences were not observed among introgressed and nonintrogressed German populations. Genetic diversity in both MHC and HSP was generally lower in northern than Austrian populations. Our study sheds light on the potential benefits of translocations of more distantly related conspecifics as a means to increase adaptive genetic variability and fitness of genetically depauperate range margin populations without distortion of local adaptation.}, language = {en} } @article{BonizzoniBourjeaChenetal.2011, author = {Bonizzoni, Mariangela and Bourjea, Jerome and Chen, Bin and Crain, B. J. and Cui, Liwang and Fiorentino, V. and Hartmann, Stefanie and Hendricks, S. and Ketmaier, Valerio and Ma, Xiaoguang and Muths, Delphine and Pavesi, Laura and Pfautsch, Simone and Rieger, M. A. and Santonastaso, T. and Sattabongkot, Jetsumon and Taron, C. H. and Taron, D. J. and Tiedemann, Ralph and Yan, Guiyun and Zheng, Bin and Zhong, Daibin}, title = {Permanent genetic resources added to molecular ecology resources database 1 April 2011-31 May 2011}, series = {Molecular ecology resources}, volume = {11}, journal = {Molecular ecology resources}, number = {5}, publisher = {Wiley-Blackwell}, address = {Malden}, organization = {Mol Ecology Resources Primer Dev}, issn = {1755-098X}, doi = {10.1111/j.1755-0998.2011.03046.x}, pages = {935 -- 936}, year = {2011}, abstract = {This article documents the addition of 92 microsatellite marker loci to the Molecular Ecology Resources Database. Loci were developed for the following species: Anopheles minimus, An. sinensis, An. dirus, Calephelis mutica, Lutjanus kasmira, Murella muralis and Orchestia montagui. These loci were cross-tested on the following species: Calephelis arizonensi, Calephelis borealis, Calephelis nemesis, Calephelis virginiensis and Lutjanus bengalensis.}, language = {en} } @article{BleidornLanterbecqEeckhautetal.2009, author = {Bleidorn, Christoph and Lanterbecq, Deborah and Eeckhaut, Igor and Tiedemann, Ralph}, title = {A PCR survey of Hox genes in the myzostomid Myzostoma cirriferum}, issn = {0949-944X}, doi = {10.1007/s00427-009-0282-z}, year = {2009}, abstract = {Using degenerate primers, we were able to identify seven Hox genes for the myzostomid Myzostoma cirriferum. The recovered fragments belong to anterior class (Mci_lab, Mci_pb), central class (Mci_Dfd, Mci_Lox5, Mci_Antp, Mci_Lox4), and posterior class (Mci_Post2) paralog groups. Orthology assignment was verified by phylogenetic analyses and presence of diagnostic regions in the homeodomain as well as flanking regions. The presence of Lox5, Lox4, and Post2 supports the inclusion of Myzostomida within Lophotrochozoa. We found signature residues within flanking regions of Lox5, which are also found in annelids, but not in Platyhelminthes. As such the available Hox genes data of myzostomids support an annelid relationship.}, language = {en} }